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 

Abstract—The effect of home energy management system 

(HEMS) is even more pronounced at the edge of smart grid 

infrastructure. However, the isolated scheduling horizons and 

the uncertainty about scheduling inputs are the major chal-

lenges for HEMS. In this paper, a novel demand-side manage-

ment system, namely, a real-time electricity scheduling (RTES) 

for residential home energy management, is presented to oper-

ate the smart home. The proposed management system at-

tempts to achieve minimizing the cost payment by optimally 

scheduling smart appliances and improving the utilization of 

renewable energy. Most importantly, it considers the uncer-

tainty in the renewable generation and the subjectivity in elec-

tricity consumption. Our RTES adopts a 24-hours rolling 

horizon, and the optimization problem be solved by an effective 

genetic algorithm at regular intervals. Moreover, to reduce the 

impact caused by the discrepancy between the predictive in-

formation and the actual information, we design an effective 

real-time prediction method for the renewable generation, and 

update the inputs of scheduling system before each optimization 

calculation. Simulation results confirm that the proposed ap-

proach can improve the performance of the home electricity 

scheduling, reduce the impact of uncertainty on the system, and 

reduce the total energy costs. 

 
Index Terms—Demand-side management, distributed gen-

eration, genetic algorithm, home energy management, real-time 

optimization, information prediction, smart grid. 
 

I. INTRODUCTION 

A. Motivation and Background 

n important and rapidly growing application of In-

ternet of Things (IoT) is the smart grid. IoT devices and 

technologies are the key drivers contributing to the 

growth of smart grid, smart homes, electric transportation 

and distributed energy storage systems [1]. The smart grid 

aims to improve efficiency, reliability and security through 

automation and modern communication technologies [2]. A 

key element of the smart grid is home energy management 

system (HEMS), the goals of HEMS are to save energy, 
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reduce users’ energy costs, improve consumers’ comfort 

level, and maintain grid stability [3]. Moreover, under the 

support of advanced metering infrastructure (AMI) technol-

ogy, physical quantities detected by HEMS have wider range, 

higher frequency and better grain size than before [4]. 

Wireless sensor networks (WSNs) play a key role in energy 

management applications, and they enable the smart grid to 

extend to dwelling houses. In some instances, wireless 

communication has some advantages over wired communi-

cation, such as low-cost infrastructure, and convenient con-

nection to difficult or unreachable areas [5].  Currently, there 

are several mainstream smart home wireless communication 

technologies: HomeRF, infrared, ZigBee, Wi-Fi, Z-wave, 

Bluetooth, etc. [5], [6]. 

Electricity cannot be stored on a large scale, and electricity 

consumption varies over different periods. These features 

have led to new peak levels in electricity demand and created 

additional pressure to balance demand and generation for 

utility [7]. As a remedy to these problems, various 

time-varying electricity pricing (EP) models have been pro-

posed: real-time pricing (RTP), critical peak pricing (CPP), 

and time of use pricing (TOUP) [8]. Real-time electricity 

pricing, which encourages users to shift deferrable household 

appliances to off-peak hours, can not only minimize the cost, 

but also play an important role in the peak clipping and valley 

filling. The recent theoretical studies in [9] have focused on 

researching the economic benefits of RTP between utility and 

user. Chavali and Yang et al. [10] adopted day-ahead pricing 

scheme, where the EP for the day is determined on the pre-

vious day.  

More and more houses integrate with renewable energy 

(RE) which includes photovoltaic (PV) arrays and wind tur-

bine (WT). Therefore, when we design the HEMS for resi-

dential microgrid, the intermittency of renewable energy, and 

the subjectivity in electricity consumption must also be con-

sidered. 

B. Literature Overview 

Currently, according to whether the input information of 

the HEMS is known, we can divide it into two main research 

categories. They both deal with demand response (DR) for 

the optimum operation of smart appliances. 

The first category focuses on the day-ahead electricity 

scheduling (DAES). The biggest feature of this strategy is to 

treat scheduling information as known. For example, Chen et 

al. [11] employed DR based on day-ahead price signals for 

reducing energy cost. Erdinc and Paterakis et al. [12], [13] 

developed a detailed HEMS structure for determining the 

optimal day-ahead appliance scheduling of a smart household 

based on hourly pricing and peak power-limiting strategy. In 

[14], considering the RTP and uncertainties of operation time 

and RE power generation, the authors proposed a new de-

mand-side management technique and energy-efficient 

scheduling algorithm to reduce the monetary expenditures. 
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However, there are three major problems for DAES. Firstly, 

it is impracticable to acquire perfect prediction. To achieve 

the optimal electricity scheduling, most papers with DAES 

usually assumed that the actual information among RTP, RE 

power generation, and the user's power consumption are the 

same as the prediction. Secondly, this DAES method does not 

consider the real-time nature of RTP. Lots of users with 

similar DAES strategies will generate new peak in electricity, 

and then the utility will adjust RTP for maintaining the power 

system stability. Thirdly, the DAES system will release all 

the energy before the end of the day without considering the 

needs of the next day. 

The second category is real-time electricity scheduling 

(RTES) of the HEMS. This category has taken more into 

account the impact of scheduling information deviation. To 

the best of our knowledge, there was little research on RTES. 

Paterakis et al. [15] provided a novel real-time rolling hori-

zon optimization framework for the optimal operation of a 

smart home. However, [15] has considered the intermittent 

behavior of RE generation with rolling optimization, but the 

range of rolling horizon was from the current moment to the 

end of the day. The model only has been evaluated for 

maximizing one day’s economic benefits without considering 

the impact on the next day. Liu et al. [16] presented a re-

al-time household load priority scheduling algorithm based 

on renewable sources availability prediction. However, in 

[16], the authors just considered the dynamic priority sched-

uling for appliances, and their algorithm may be more rea-

sonable if they had considered the cost of computing time. 

Moreover, the authors did not investigate that the installation 

of battery can greatly improve the economic efficiency. 

HEMS which manages electrical devices and smart ap-

pliances can be summed up as a complex optimization 

problem with multiple constrains. Solving this problem re-

quires detailed information about user specifications and 

preferences, which is difficult to achieve in practice [10]. 

When the mathematical model is relatively simple, the tradi-

tional methods can find the optimal solution very well. For 

example, [7], [12], and [13] applied mixed-integer linear 

programming (MILP) problem, [9] investigated a linear 

programming problem, and [17] developed an integer linear 

programming problem. However, most of the optimization 

problems are non-linear or non-convex [18]. There are some 

limitations in the traditional programming methods. Firstly, 

these methods handle only a limited number of controllable 

loads [19]. Then, when the problem entails non-convex pro-

gramming or MILP, traditional methods may not be found to 

be feasible or the calculated times may be too high [20]. 

Furthermore, the commercial solvers (such as CPLEX, 

MOSEK, CVX and LINGO et al.) that would cost amount of 

expense are not suitable to be implemented in embedded 

devices such as smart meters [20]. The solvers also do not 

have the flexibility in constructing and developing the algo-

rithm, and the solving process of solvers cannot be changed 

for improving the performance [21]. 

Meta-heuristic approaches were extensively used by re-

searchers considered the limitation of computational effort 

[22]. Compared to other meta-heuristic approaches, the ge-

netic algorithm (GA) can solve linear or non-linear, discrete 

or continuous optimization problems which cannot be af-

forded by any other conventional approaches. [23] chose GA 

to solve the optimization problem due to it can find 

near-optimal solutions in an acceptable computing time, and 

the flexibility of the algorithm for various problems. In [21], 

the scheduling problem has been solved by GA which not 

only reduces the cost and peak-to-average ratio (PAR), but 

also schedules different types of large number of appliances. 

In this paper, the optimization model is formulated as a 

multi-constrained mixed integer problem (MCMIP), and the 

model is non-convex. Moreover, the number of controlled 

appliances and the scheduling accuracy can be adjusted ac-

cording to the user's preference, and the scale of optimization 

variable is variable. Furthermore, if the other optimization 

goals such as comfort are added, the current model will be-

come non-linear. For the above reasons, we prefer to use GA 

as the optimization method of this paper. 

C. Contributions 

The uncertainty of scheduling information is the major 

challenge of HEMS. If the prediction information has a great 

error, it will not be able to achieve scheduling goals in actual 

environment. The main contributions of this paper are sum-

marized as follows. 

1) To the authors' best knowledge, this real-time schedul-

ing system is the first one been proposed to reduce the 

error of PV power generation prediction, adjust the 

electricity consumption behaver, and minimize the cost 

payment. The decision is always optimized, and the 

economic performance of which is improved by 8.4% 

compared with the state of the art.  

2) For maximizing the economic benefit of electricity 

scheduling, the existing HEMS will always release all 

the energy of the battery before the end of the day. In 

other words, no matter how high the EP and how low 

the PV power generation is in the next day, the battery 

will not store energy for the next day. However, in this 

paper, this problem is solved by the real-time electricity 

scheduling. Battery operation at each period is opti-

mally adjusted based on changes in scheduling infor-

mation to further reduce the cost payment. 

3) The scheduling system is provided to investigate a 

collaborative scheduling which includes peak pow-

er-limiting strategies, energy storage system (ESS), and 

bi-directional power flows of ESS (ESS-to-home and 

ESS-to-grid) and RE (RE-to-home and RE-to-grid).  

4) To meet the requirement of time efficiency in the re-

al-time scheduling, an efficient GA based ESS man-

agement strategy is proposed for solving the problem. 

D. Organization 

The rest of the paper is organized as follows. In Section II，

We introduce system architecture and models of HEMS. 

Section III introduces the problem formulation. We propose 

RTES algorithm for smart appliances, which is introduced in 

Section IV. Afterwards, to validate the proposed approach, 

several case studies are introduced in Section V. Finally, 

Section VI concludes the paper. 

II. SYSTEM ARCHITECTURE AND MODEL 

A. System Architecture 

HEMS comprises smart appliances, RE system (photo-

voltaic arrays and wind turbine), energy storage system (e.g. 

battery packs), home energy management controller (HEMC), 

smart controllers, smart meters, etc. The entire architecture of 

HEMS is shown in Fig. 1.  
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Fig. 1.  A block diagram of typical HEMS 

ESS plays the role of energy transfer. User will purchase 

energy from the grid at low prices period and store it in the 

ESS. Then ESS will power the appliances when the EP is 

high. The ESS can also be used to store excessive renewable 

energy (RE) generation. Users can sell the excessive elec-

tricity generated by RE to the grid, i.e., the ability of 

bi-directional power flows. However, to limit user’s peak 

electricity consumption, HEMS should consider the peak 

power limiting strategy imposed by utility [24].  

B. Household Smart Appliances Model 

The smart appliances are generally divided into two cate-

gories: non-deferrable loads (refrigerator, lighting, computer, 

etc.) and deferrable loads (dish washer, washing machine, 

water pump, etc.) [25]. The electricity tasks (ETs) of appli-

ances within rolling horizon (RH) are shown in Fig. 2.   

For the deferrable loads, HEMC can shift their electricity 

usage from the higher EP periods to the lower EP periods, but 

they must satisfy some requirements. Whereas, for the 

non-deferrable loads, the HEMC must unconditionally power 

it when the user needs. Therefore, the non-deferrable loads do 

not participate in the optimization scheduling. But they need 

to be overlapped on total electricity demand as part of 

household electricity consumption.   

The length of rolling horizon (LRH) is the scheduling 

scope. We use the interval of optimization to define the 

scheduling interval between two adjacent optimization exe-

cutions. The RH moves on the time axis at regular interval 

(e.g., half an hour), and HEMC optimizes the operation of 

electrical appliances in the RH. We divide the RH into H 

periods and the length of period (LTP) 𝛥ℎ =  24/𝐻  hour 

(e.g. the LTP is half an hour when 𝐻 =  48 in Fig. 2). The 

variable 𝑎 =  1, 2, . . . , 𝐴 represents the number of deferrable 

loads. A binary variable 𝑠𝑎(ℎ)  is presented to denote the 

operation state of appliance a in period h, ℎ ∈ {1, 2, … , 𝐻}. 

𝑠𝑎(ℎ)  =  1 represents that the appliance is at working state 

and 𝑠𝑎(ℎ)  =  0 is at idle state [23]. [𝛼𝑎, 𝛽𝑎]  indicates the 

operation time range of appliance a and da represents the 

length of time to complete the task. Then appliance a should 

satisfy the time constraints shown as: 

( )
a

a

a a

h

s h d a




  ，                            (1) 

( ) 0, [1, ] [ , ], .s h if h H and h aa a a             (2) 

Based on whether the appliances need to keep working 

until the completion of the task, we can further divide the 

deferrable loads into two types: interruptible loads (e.g., 

washing machine, water pump, etc.) and non-interruptible 

loads (e.g., rice cooker, microwave oven, etc.).  

The deferrable loads need to satisfy that the total number 

of 1 within variable 𝑠𝑎 equals da in the operation range. 

( ) 0 1, [ , ] .a a as h or if h a                    (3) 

However, the non-interruptible loads (NILs) require that 

there must have da consecutive values 1. The constraint is 

described below.  
+

1

( ) [ ( 1) ( )], NILs, .
ah d

a a a a

h

s d s h s h a h



 

            (4) 

To simplify the calculation, we assume that the appliance a 

run at the average power Pa. The total power consumption 

Pdef(h) during period h for the deferrable loads can be calcu-

lated by 

1

( ) ( ) .
A

def a a

a

P h s h P h


  ，                        (5) 

Furthermore, to satisfy the consumption of electrical ap-

pliances, there are three power supplies: ESS discharging 

 𝑃𝐸𝑆𝑆,𝑎𝑝𝑝
𝑑𝑐ℎ (ℎ), RE source PRE,app(h), or power purchased from 

grid 𝑃𝑔𝑟𝑖𝑑,𝑎𝑝𝑝
𝑑𝑐ℎ (ℎ). Therefore, the power consumption Papp(h) 

of all smart appliances can be calculated by (6) and (7).  

      ( ) ( ) ( )app def ndefP h P h P h h  ，                     (6) 

, , ,( ) ( ) ( ) ( ) .dch

app ESS app RE app grid appP h P h P h P h h   ，      (7) 

C. Energy Storage System Model 

 The state of charging (SOC) SOC(h) reflects the ratio of 

remaining ESS capacity Erem(h) to its maximum capacity EESS 

at end of period h, and to avoid energy storage system (ESS) 

over-discharge and overcharge, we need to add constraints 

for the SOC, showed in (8) and (9). The SOC of ESS is lim-

ited by imposing a less than its capacity SOCmax and a least 

SOC limit SOCmin. 

( ) ( )rem ESSSOC h E h E h ，                     (8) 

( ) .min maxSOC SOC h SOC h  ，                  (9) 

Considering the ESS charging and discharging efficiency, 

the 𝜆𝐸𝑆𝑆
𝑐ℎ  and 𝜆𝐸𝑆𝑆

𝑑𝑐ℎ  respectively represent the charging and 

discharging efficiency [13]. The two different efficiencies 

correspond to two different power indicators, respectively. 

Therefore, the dynamic energy conservation between 

charging power ( )ch

ESSP h  and discharging power ( )dch

ESSP h  of 

ESS is shown by (10) - (13). 

( ) ( -1)

( ( ) ( ) )ch ch dch dch

ESS ESS ESS ESS ESS

SOC h SOC h

P h P h h E h 



   ，
     (10) 

( ) iniSOC h SOC if h= 0 ，                      (11) 

0 ( ) ( )ch ch,max

ESS ESS ESSP h P u h h  ，                  (12) 

0 ( ) (1 ( )) .dch dch,max

ESS ESS ESSP h P u h h   ，            (13) 

Where 𝑃𝐸𝑆𝑆
𝑐ℎ,𝑚𝑎𝑥

 and 𝑃𝐸𝑆𝑆
𝑑𝑐ℎ,𝑚𝑎𝑥

 respectively represent the value 

of maximum charging power and the maximum discharging 

power. Because the ESS can be either charge or discharge in 

a period, we introduce a binary variable uESS(h) to indicate 

charging state (uESS(h) = 1) or discharging state (uESS(h) = 0). 
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In addition, there is also a power balance between charge and 

discharge: 

, ,( ) ( )+ ( )ch ch ch

ESS RE ESS grid ESSP h P h P h h ，              (14) 

, ,( ) ( )+ ( ) .dch dch dch

ESS ESS app ESS gridP h P h P h h ，             (15) 

Where 𝑃𝑅𝐸,𝐸𝑆𝑆
𝑐ℎ , 𝑃𝑔𝑟𝑖𝑑,𝐸𝑆𝑆

𝑐ℎ , 𝑃𝐸𝑆𝑆,𝑎𝑝𝑝
𝑑𝑐ℎ , and 𝑃𝐸𝑆𝑆,𝑔𝑟𝑖𝑑

𝑑𝑐ℎ  respectively 

indicate the power flow from RE to ESS, grid to ESS, ESS to 

appliances, and ESS to grid. 

Moreover, PESS(h), the output power of the ESS (positive 

value for charging and negative value for discharging), is 

calculated by (16) for simplifying the calculation. 

( ) ( ) ( ) .ch dch

ESS ESS ESSP h P h P h h  ，                 (16) 

As the RH moving forward, we need to update the appli-

ance's variables (e.g. 𝛼𝑎 , 𝛽𝑎 and da) in real time. 

Furthermore, the horizon edge may be within the allowed 

working range of the ETs (e.g. Task 1 and Task 8 in Fig. 2). 

In this paper, the working status of appliances be update in 

real time by HEMC. For the appliances which on the left edge 

of the horizon, we substitute the remaining workload for da 

and the number 1 for 𝛼𝑎. Whereas for the right edge of the 

horizon, we assume that the scheduling system give priority 

to competing electricity tasks (ETs), i.e., when the allowable 

working time range of the appliance a in the horizon is less 

than da, we make the appliance 𝑎 to work in this range, oth-

erwise we replace the value H with 𝛽𝑎. 

D. Renewable Energy Model 

The power balance of RE can be modeled by (17) and (18). 

, , ,( )= ( ) ( )RE gen RE use RE discardP h P h P h h ，            (17) 

, , , ,( ) ( ) ( ) ( ) .ch

RE use RE grid RE app RE ESSP h P h P h P h h   ，     (18) 

Where 𝑃𝑅𝐸,𝑔𝑒𝑛 is the power generated by RE, 𝑃𝑅𝐸,𝑢𝑠𝑒 is the 

power consumed by household, and 𝑃𝑅𝐸,𝑑𝑖𝑠𝑐𝑎𝑟𝑑  is the dis-

carded energy when it is not available.  

E. Information Prediction and Adjustment 

The RTES system includes real-time information predic-

tion and adjustment. In the real-time electricity scheduling, 

the system's inputs are predicted and updated at each period. 

We only need to accurately predict the information in the 

upcoming period and the remaining time periods of the RH 

do not need to be as accurate as the first period. 

The prediction not only depends on a large amount of 

historical data, but also has a higher correlation with the past 

few periods. In this paper, the designed information predic-

tion model of RE generation consists of two parts for the 

future 24 hours: the long-term trend forecast and the 

short-term accurate fit. The long-term trend forecasting is 

based on prior knowledge, and we use the data fitting strategy 

for short-term accurate prediction.  

1) The power prediction of RE: Base on the power generation 

characteristics, we design a prediction model for power 

generation. According to weather forecast, we select the 

average generation of different weather types (e.g. sunny, 

cloudy, rainy, snowy, etc.) in each season, and see it as the 

forecasting trend of RE power; Then, we fit the data in the 

upcoming period by adopting the past 5 hours data and the 

future trend data from 2
th

 to 3
th

 hour; Last, we replace the first 

period of the future 24-hour power trend with the fitting data. 

In this method, we select a fitting method of polynomial 

function with 5 fitting orders.  
2) The ETs adjustment: In general, the loads participating in 

the electricity scheduling are deferrable. However, the user's 

consumption habits are variegated. Sometimes, for meeting 

the user's comfort, the user will additionally increase, change, 

or delete some ETs. Therefore, the subjectivity of the user 

makes it difficult to predict the user’s consumption. This also 

is one of the main reasons why DAES strategy is sensitive to 

information prediction errors. There are some literatures on 

dynamically inferring users’ demands for electricity. For 

example, a human-centric smart home energy management 

system integrates ubiquitous sensing data to discover the 

patterns of power usage and cognitively understand the be-

haviors of human beings [26]. 

In the real-time electricity scheduling system, the strategy 

we have adopted is the online registration of ETs. In other 

words, we divide all ETs into regular tasks and changeable 

tasks. In this paper, we assume that the daily regular tasks are 

known. For changeable tasks, user can increase, change, or 

delete these changeable tasks at any time.  

F. Power Balance of Grid 

 Power balance between supply and consumption must be 

maintained, it can be defined as:  

,( ) ( ) ( ) ( ) .grid ESS app RE useP h P h P h P h h   ，          (19) 

However, the EPs of purchasing and selling are usually dif-

ferent. 𝑃𝑔𝑟𝑖𝑑,𝑏𝑢𝑦  represents the power purchased from the 

utility and 𝑃𝑔𝑟𝑖𝑑,𝑠𝑒𝑙𝑙  denotes the power sold to grid. They can 

be calculated and constrained by (20) – (24). 

, ,( ) ( ) ( )grid grid buy grid sellP h P h P h h  ，              (20) 

, , ,( ) ( ) ( )grid buy grid app grid ESSP h P h P h h  ，            (21) 

, , ,( ) ( ) ( )grid sell ESS grid RE gridP h P h P h h  ，             (22) 

, ,0 ( ) ( )grid buy grid buy,maxP h P h h  ，                   (23) 

, ,0 ( ) ( ) .grid sell grid sell,maxP h P h h  ，                   (24)  

III. PROBLEM FORMULATION 

In this section, we propose a mathematical representation 

about the residential scheduling goal: electricity cost pay-

ment minimization. Most of the related literatures regard the 

cost payment minimization as the basic scheduling objective, 

and the basic objective equation can be expressed as: 

,

1

,

[ ( ) ( )
min

( ) ( )]

. . constraints (1) (4), (6), (9) (13),

(16), (18), (19), (23), (24).



 
 

  
  

 


H

grid buy buy

hpay

grid sell sell

h P h RTP h
Cost

P h RTP h

s t            (25)  

In the problem (25), if we divide 24 hours into 48 periods, we 

can find that there are 48 continuous variables in the ESS and 

lots of 0-1 integer variables for deferrable loads. The opti-

mization model also is formulated as a multi-constrained 

mixed integer problem (MCMIP). 

IV. ELECTRICITY SCHEDULING ALGORITHM  

Due to the facts that the RTES system updates the input 

information and solves the optimization problem (25) within 

a limited time interval, the optimization algorithm is required 

with better time efficiency. In this section, a RTES algorithm 

based on GA and ESS management strategy is proposed. 

A. ESS management strategy 

From the ESS constraints (8) – (13), we can find that the 
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each ESS variable interacts with each other. As an adaptive 

global optimization probability search algorithm, genetic 

algorithm is widely used to solve complex optimization 

problems, but the local search ability is not strong. The new 

generation of feasible solution is accomplished by random 

crossovers and mutations, and it will cost a lot to reach the 

optimal solution itself. If the continuous ESS variables are 

used as the optimization variables of GA, it can not only 

greatly increase the algorithm complexity, but also may take 

a lot of time to converge to the optimal solution.  

It should be noted that when the EP, RE power generation, 

consumption power and peak power limiting are collected, it 

will correspond to the unique optimal solution of ESS. 

Therefore, we can design an ESS management strategy based 

on the collected data. In this paper, the more detail about the 

ESS management strategy for finding the optimal 𝑃𝐸𝑆𝑆  is 

summarized in Algorithm 1. The designed strategy consists 

of following four steps:  

Firstly, a set feasible solution of smart appliances is ini-

tialized by GA, and the power consumption Papp(h) is calcu-

lated by (6); Then, considering the gap between Papp(h) and 

PRE,gen (h), we store PV energy that should have been dis-

carded and releasing it at high EP periods; Next, the initial 

power of ESS is discharged at high EP periods; Last, ESS 

charges during the low-price periods and discharges during 

the high price periods. Noted that if there is one charging 

power for a certain period, there must be a discharge opera-

tion with the same power in another period. It is also worth 

noting that the above four-cycle steps need to not only meet 

the constraints of problem (25), but also reduce the total cost 

before execution. Once the total cost cannot be reduced, the 

cycle will stop. 

B. Efficient GA Based ESS Management Strategy 

The MCMIP (25) is non-convex, if we use the traditional 

solution method; it is easy to be trapped at a local optimal 

point and insensitive to initial solutions. In addition, the 

calculation time may be too high. However, the real-time 

system requires that the optimization result be obtained 

within the period. The meta-heuristic algorithms can remedy 

these issues. Among the meta-heuristic algorithms, the GA 

and the particle swarm optimization (PSO) are often applied 

to the optimization problem. Adopting GA for solving 

scheduling problems has also been approved to be a suitable 

solution [17], [19]. In this paper, we also use GA to optimize 

the variables of the appliances. For improving the conver-

gence speed of the algorithm, the effective GA based ESS 

management strategy is summarized in Algorithm 2. The 

more explanations about GA are described in the previous 

study [27]. Furthermore, considering the cost payment of 

HEMS may be negative, we introduce a coefficient c for 

defining the fitness function, as given by 

1 ( ).payfitness Cost c                          (26) 

C. Real-time Electricity Scheduling Algorithm 

The real-time electricity scheduling (RTES) system needs 

to update the future 24-hour system inputs included ETs, EP 

and RE power generation at the beginning of each period. 

The system also needs to record the working data of ESS and 

the working status of other devices in real time.  

 

Algorithm 1 ESS Management Strategy 
1: Collect  𝑆𝑂𝐶𝑖𝑛𝑖 , 𝑅𝑇𝑃𝑏𝑢𝑦 , 𝑅𝑇𝑃𝑠𝑒𝑙𝑙 , 𝑃𝑔𝑟𝑖𝑑,𝑏𝑢𝑦,𝑚𝑎𝑥 , 𝑃𝑔𝑟𝑖𝑑,𝑠𝑒𝑙𝑙,𝑚𝑎𝑥 , 

𝑃𝑅𝐸,𝑔𝑒𝑛, and 𝑃𝑛𝑑𝑒𝑓 within rolling horizon. 

2: Initial  𝑃𝑎𝑝𝑝 by using GA and (6), 𝑃𝐸𝑆𝑆 : =  𝟎. 

3: Update 𝑃𝑔𝑟𝑖𝑑  =  𝑃𝐸𝑆𝑆 + 𝑃𝑎𝑝𝑝 − 𝑃𝑅𝐸,𝑔𝑒𝑛, and find discarded RE 

by comparing lower limit of peak power. 

4: Repeat (for each period existed discarded RE) 

5:       Find one charging period in discarded RE periods and one 

discharging period by sorted EP in descending order. 

6:       Find the biggest transferred power. 

7:       Update 𝑃𝐸𝑆𝑆, 𝑃𝑔𝑟𝑖𝑑. 

8: Until there is no period for discarding PV. 

9: Repeat (for each allowed discharge period by sorted EP in 

descending order)  

10:       Discharge the initial capacity of the ESS. 

11:       Update 𝑃𝐸𝑆𝑆, 𝑃𝑔𝑟𝑖𝑑. 

12: Until the end of the period or 𝑆𝑂𝐶(𝐻) is equal to 𝑆𝑂𝐶𝑚𝑖𝑛. 

13: Repeat (for each allowed charge period by sorting EP in as-

cending order) 

14:       Find discharging period by sorting EP in descending order. 

15:       Find the biggest transferred power. 

16:       Compare the electricity costs before and after this operation. 

17:       If the electricity bill becomes smaller Then 

18:                Update 𝑃𝐸𝑆𝑆, 𝑃𝑔𝑟𝑖𝑑. 

19:       End 

20: Until there are no periods that can be operated or the total cost 

cannot be reduced. 

 

 

Algorithm 2 Genetic Algorithm 
1: Initialize the first-generation population of deferrable loads. 

2: gen: = 1. 

3: While gen ≤ Maxgen 

4:        𝑛𝑐𝑟𝑜𝑠𝑠 : = 1, 𝑛𝑚𝑢𝑡𝑎𝑡𝑒 : = 1. 

5: Finding the optimal 𝑃𝐸𝑆𝑆 by Algorithm 1. 

6: Calculate fitness by using (25) – (26). 

7: Choose the M*Pdng individuals in descending fitness order 

as the best individuals. 

8: Select the individuals by using the roulette wheel. 

9: Repeat 

10:       Select randomly two chromosomes, if pc > rand, cross 

they by single point crossover. 

11:       𝑛𝑐𝑟𝑜𝑠𝑠 : = 𝑛𝑐𝑟𝑜𝑠𝑠+1. 

12: Until 𝑛𝑐𝑟𝑜𝑠𝑠 : =  M /2. 

13: Repeat 

14:       Select randomly one chromosome, if pm > rand, mutate 

it by binary mutation. 

15:      𝑛𝑚𝑢𝑡𝑎𝑡𝑒 : = 𝑛𝑚𝑢𝑡𝑎𝑡𝑒 +1. 

16: Until 𝑛𝑚𝑢𝑡𝑎𝑡𝑒  : =  M. 

17: After 3 basic operations of the individuals plus the best 

individuals together for the next iteration. 

18: End while 

 
START

Current time is 

beginning of period 

Update time

Online registration of ETs by user

YES

NO

Update RTP and forecast RE power 

generation in next 24 hours

Solve the problem (25) by using Algorithm 2

Send scheduling result to HEMC

Record  the working status of each home device
 

Fig. 3.  Real-time electricity scheduling algorithm 
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In this paper, the designed RTES algorithm is summarized 

in Fig. 3. The RTES algorithm runs at regular interval. Once 

current time is the beginning of each period, the home 

electricity scheduling optimization will be performed once. 

Before solving the optimization problem (25), the HEMC 

will collect the data of RE, EP, ETs and working status of 

each home device. After that, the HEMC controls the opera-

tion and records the working status of each device in real 

time. 

The HEMS adopted real-time electricity scheduling 

(RTES) algorithm mainly has two advantages. Firstly, it can 

reduce the impact of consumption uncertainty, and quickly 

response the change of RE generation. Secondly, it also al-

lows user to change, add, or delete ETs at any time.  

V. SIMULATION RESULTS AND DISCUSSIONS 

In this paper, two types of information uncertainty are 

considered to evaluate the system performances between 

day-ahead electricity scheduling (DAES) and RTES. These 

uncertainties are RE generation and user's electricity con-

sumption. When the electricity cost payment is calculated by 

actual information, we need to design an error handling 

mechanism for ensuring that current scheduling does not 

affect the scheduling of subsequent periods. We assume that 

user buy electricity from the utility if the error is larger than 0 

(power shortage). However, when the error is less than 0 

(power surplus), the priorities of processing should be: first 

saving electric energy to ESS, second selling electric energy 

to utility, last discarding.  

We divide 24 hours into H = 48 periods. Non-deferrable 

load consumption during each period was recorded, and the 

average power consumption curve of the non-deferrable load 

consumption is given. The initial SOC is 0.5, and the other 

parameters of ESS are summarized in Table I.  

The GA basic parameters obtained after many experiments 

include population size M = 40, the selected rate Pdng = 0.9, 

the crossover rate pc = 0.7, the mutation rate pm = 0.1, and the 

roulette wheel is used to select excellent individuals.  

Integrating the bi-directional power flows between the 

end-user and the utility, we assume that the next 24-hour RTP 

signal of each period available for the consumer via the smart 

meter is given, and user subscribe the RTP program issued by 

Illinois Power Company [28]. Moreover, we assume that the 

selling price is half of the purchasing price, and the exchange 

power limit between the user and the grid is given.  

All simulations were implemented using a personal com-

puter using MATLAB R2016a.  

A. HEMS Information Prediction 

The RE system consists of three PV arrays, the power in-

formation of each PV array adopted by California solar ini-

tiative 15-minute interval data [29], and the California 

weather type information adopted by National Oceanic & 

Atmospheric Administration are used to test [30]. An exam-

ple for predicting the power generation of RE on December 1, 

2017 is shown in Fig. 4. We observed that the mean absolute 

deviation (MAD) of real-time prediction during 24 hours can 

reduce from 0.467 kW (day-ahead forecast) to 0.273 kW.   

We assume that the regular deferrable tasks included m = 6 

non-interruptible ETs and n = 24 interruptible ETs are given 

[27], and user has the same regular deferrable tasks every day. 

For the change tasks, user can increase, change, or delete 

tasks at any time. In this paper, we assume that the user will 

register two new ETs to HEMC at 4:30 on December 1, 2017, 

as can be seen from Table II. It should be noted that these two 

new ETs cannot be detected by the DAES system and will be 

detected by RTES system at 4:30. 

B. Performance of GA based ESS Management Strategy 

As shown in Fig. 5, we adopted the actual information as 

DAES system’s inputs for analyzing the performances of GA 

based ESS management strategy and traditional GA. From 

the result in Fig. 5(a), we found that the average cost payment 

of the population during the evolution process has large 

fluctuations. Moreover, the traditional algorithm converges 

to 159, which indicates that it falls into a local optimal point 

due to complex constrains of ESS. However, the cost pay-

ment with actual information of GA based ESS on December 

1, 2017 along the 500 iterations of GA is performed 10 times, 

as can be shown in Fig. 5(b). We can see that the worst av-

erage cost payment of unoptimized electricity scheduling is 

TABLE I  

BASIC PARAMETERS OF ESS 

Variable Value Variable Value 

𝑆𝑂𝐶𝑚𝑖𝑛 0.2 𝐸𝐸𝑆𝑆 20 kWh 

𝑆𝑂𝐶𝑚𝑎𝑥 0.9 𝜆𝐸𝑆𝑆
𝑐ℎ  0.99 

𝑃𝐸𝑆𝑆
𝑐ℎ,𝑚𝑎𝑥

 5 kW 𝜆𝐸𝑆𝑆
𝑑𝑐ℎ 0.99 

𝑃𝐸𝑆𝑆
𝑑𝑐ℎ,𝑚𝑎𝑥

 5 kW - - 

 

TABLE II  

TWO NEW ELECTRICITY TASKS ON DECEMBER 1, 2017 

Period Power (kW) 

10, 11, 12, 13, 14, 15, 16, 17, 18 4, 4, 4, 4, 4, 5.5, 4, 4, 4 

33, 34, 35, 36, 37, 38, 39, 40 4.5, 4.5, 4.5, 4.5, 5.5, 5, 4, 4 

 

 
Fig. 4.  Real-time power prediction of RE.  

 
 (a) 

 
(b) 

Fig. 5.  Performance comparison of GA. (a) Optimization result of traditional 

GA. (b) Trend of resulting along the GA based ESS management strategy 

performing 10 times. 
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about 165 cents, the minimum cost payment is rapidly de-

clining at 146.2 cents after 100 iterations, and the cost almost 

tends to stabilize at about 146 cents (reduced by 11.52% 

compared to no optimization) after 120 iterations with 42.12 

seconds. We can also find that the 10 curves of minimum cost 

payment are similarly decreasing during the iterations.  

In addition, we also use the solver LINGO to solve the 

same optimization problem, and the optimal cost payment is 

145.545 cents. This shows that the designed algorithm can 

obtain a solution that is very close to the global optimal. 

However, the solver cannot adapt to the possible variation of 

the optimization model according to user needs. This is also 

one of the main reasons why we choose GA.  

Therefore, the GA based ESS management strategy with 

the maximum number of iterations Maxgen = 120 not only 

steadily optimize the electricity payment, but also meet the 

requirements of the real-time system with 30 minutes interval. 

It should be noted that the solutions of two adjacent periods 

have certain similarities, and the RTES system can use the 

optimal solution of the previous period as a reference for the 

current initial solution of GA, which will further reduce the 

optimization time.  

In the same simulated environment without information 

prediction errors in RE generation and ETs, we respectively 

perform DAES (Case 1) and RTES (Case 2) from December 

1, 2017 to December 2, 2017. Compared to these two case 

studies, both cases can fully utilize renewable energy, but 

Case 2 provides a cost reduction of 12.754 cents. We can find 

that the end SOC of ESS on December 1, 2017 is 0.9 in Case 

2 rather than 0.2 in Case 1. This is because the optimal solu-

tion of DAES is only obtained within 24 hours. However, the 

decision of RTES on each period is always optimal solution 

within the next 24 hours. The reason why the ESS is charged 

during the last few periods is because the EP during the sev-

eral periods in future is higher. 

However, it should be noted that this DAES result is dif-

ficult to achieve in real life because error-free prediction of 

RE generation and consumption cannot be achieved. In ad-

dition, user will not completely sacrifice their electrical 

comfort for saving cost payment. Therefore, we should 

evaluate the system performance in the real environment with 

information prediction error. 

C. Impact of Information with Prediction Error 

To respectively demonstrate the impact of prediction error 

on DAES and RTES, we assume there are errors in infor-

mation prediction. The ETs prediction error (the user will 

register two new ETs to HEMC at 4:30) only exists on the 

first day.  

To be able to make a comparative analysis for presenting 

the merits of the proposed methodology, such cost payment, 

SOC, and utilization rate of RE will be necessary. With the 

same prediction errors, we respectively perform the DAES 

(Case 3) and the RTES (Case 4) from December 1, 2017 to 

December 2, 2017. The total electricity scheduling profiles of 

two cases are shown in Fig. 6 and Fig.7, respectively. We 

analyze the performance comparison between DAES and the 

RTES from three aspects: cost payment, SOC of ESS, and 

utilization rate of RE respectively.  

For meeting the electricity demand of the registered two 

new ETs and not to affect the subsequent scheduling of ESS, 

DAES system will buy electricity from 4:30 to 9:00 and from 

16:00 to 20:00, and the total cost payment during two days is 

240.38 cents, as can be seen from Fig. 6(a). However, when 

the user need to adjust their ETs, the RTES system immedi-

ately responds to the adjustment after it is identified, and 

calculates the new optimal scheduling strategy with 220.19 

cents of the total cost payment. This strategy saves electricity 

bills by avoiding buying electricity at high rates and the rel-

evant results are presented in Fig. 7(a). 

The ESS plays an important role in saving costs. Not only 

can ESS save excess renewable energy, ESS can also charge 

at low-rate periods and discharge at high-rate periods. The 

comparison of charging/discharging between Case 3 and 

Case 4 are shown in Fig. 6(c)(d) and Fig. 7(c)(d), respectively. 

The end SOC of DAES system within one day always re-

duces to 0.2 for saving cost, but the RTES system maybe not 

(the end SOC is 0.9 on the first day). The RTES system will 

find the optimal strategy within the rolling horizon rather 

than in a certain day. Therefore, the battery will store energy 

for the next day if necessary, and the saving potential of the 

ESS can be further utilized by RTES system. 

Increasing the utilization of RE can further save cost 

  
(a)                                                                                                                          (b) 

   
(c)                                                                                                                          (d) 

Fig. 6.  Scheduling results of DAES with prediction error. (a) Day-ahead scheduling result on December 1, 2017. (b) Day-ahead scheduling result on De-

cember 2, 2017. (c) The ESS output power and SOC on December 1, 2017. (d) The ESS output power and SOC on December 2, 2017. 
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payment. In the HEMS, RE can supply energy for home loads, 

store excess energy in ESS, and sell unused energy to the 

utility. Under the limited ESS capacity and the peak pow-

er-limiting strategies, HEMS needs to schedule RE genera-

tion based on predicted generation. However, the prediction 

error may lead to the incomplete use of renewable energy. 

Due to the prediction error of DAES, there is a discarding of 

RE at period 17 and 18 on December 2, 2017 because the 

selling power exceed the selling limit, and the utilization is 

98.87% as can be seen from Fig. 6(b). However, the utiliza-

tion be increased to 99.70% in RTES system by real-time 

prediction of RE generation as can be seen from Fig. 7(b).  

The comparison of the 4 different case studies in this paper 

is summarized in Table III. We can find that the economic 

benefit of RTES is better than that of RTES regardless of 

whether there are errors in information prediction.  

In addition, the prediction error still exists. If we subdivide 

24 hours into more periods, it will further reduce the predic-

tion error and get closer to the actual information.  

VI. CONCLUSIONS AND FUTURE WORK 

This paper, as the major contribution to the literature on 

smart home operation, proposes a RTES for HEMS, which 

considers the errors of information prediction. Moreover, this 

scheduling system is provided to investigate a collaborative 

scheduling which includes peak power limit, ESS, and 

bi-directional power flows of ESS and RE. Unlike most of the 

previous HEMS strategies that focus on DAES, we design the 

real-time scheduling which ensures that the scheduling of 

each period is the best decision based on prediction infor-

mation within the future 24 hours. We have designed a GA 

based on ESS management strategy to meet the time effi-

ciency. The real-time prediction approach of RE generation 

and the online registration of ETs are proposed for reducing 

information error. This paper makes two basic assumptions: 

The RTP signal and the daily regular tasks in future 24 hours 

are known before performing each scheduling optimization. 

Four test cases were examined. Simulation results show that 

RTES system has better performance of total electricity cost 

payment than DAES system, and HEMS with RTES algo-

rithm can quickly respond to the sudden change of system 

inputs. Moreover, the battery will store energy for the next 

day if necessary by the RTES. 

Some limitations of this study are as follows. To improve 

the scheduling flexibility and reality, the temperature appli-

ance and the electric vehicle should be modeled separately to 

participate in the scheduling. Moreover, we should consider 

the cost of electricity storage, and the prediction of user en-

ergy usage behaver rather than online registration. The RTES 

also needs to be deployed on the embedded device for de-

tection. These are the future works need to investigate.  
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