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Abstract— In this paper, we proposed a dynamic mobility-
assisted MDS-based localization algorithms for sparse mobile
sensor network. For sparse networks, the assumption of the
existing MDS-based localization algorithms is not necessary valid
and the network may even be nonrigid, which significantly
affects the application and accuracy of the existing MDS-based
algorithms. In the proposed algorithm, we utilize the mobile
capability of sensors in a mobile network. By moving the
sensors in a random direction and recording the distances to
their neighbors during the movement, virtual nodes are added.
The distances between virtual nodes and real nodes provide
more information about network, which leads to significantly
better localization than existing methods for sparse networks.
Experiments and evaluation of the proposed algorithm are
provided.

Index Terms— sensor network localization MDS

I. I NTRODUCTION

Recent advancements in wireless communication and
micro-electro-mechanical systems (MEMS) have made possi-
ble the deployment of wireless sensor networks for many real
world applications, such as environmental monitoring, search
and rescue, military surveillance, and intelligent transporta-
tion, etc [1], [2], [3]. The ability of a sensor node to determine
its physical location is of fundamental importance in sensor
networks. In recent years, various sensor localization methods
have been developed for ad hoc wireless sensor networks.
Most of the node localization algorithms are based on range
measurement, through either time of arrival (TOA) [4], time
difference of arrival (TDOA) [5], or received signal strength
(RSS) [6]. For example, In the Picoradio project [7] at UC
Berkeley, a geolocation scheme for an indoor environment is
provided based on RF received signal strength measurements
and pre-calculated signal strength maps. The AHLoS (Ad-
Hoc Localization System) [8] proposed by Savvideset. al
enables sensor nodes to discover their locations using a
set distributed iterative algorithms. An RF based proximity
method was developed by [6], in which the location of a
node is given as a centroid generated by counting the beacon
signals transmitted by a set of beacons pre-positioned in
a mesh pattern. Other methods that do not rely on range
measurements were also developed. For example, the count
of hops is used as an indication of the distance to the beacon
nodes in some applications [4].

However, most of the localization algorithms are developed
for stationary sensor networks where the sensor nodes do
not move once they are deployed. Recent years have seen
the growing interest in mobile sensor networks [9] where
all or partial of the sensor nodes have motion capability
endowed by robotic platforms. Mobile sensor networks have
more flexibility, adaptivity and even intelligence compared
to stationary sensor networks. Mobile senors can dynami-
cally reposition themselves to satisfy certain requirements on
monitoring coverage, network connectivity, or fault tolerance.
Localization for mobile sensor networks is very important to
facilitate the information collection and the movement of mo-
bile sensors. Researchers solving the localization problem for
mobile sensor networks usually approach it from a robotics
perspective, which heavily relies on the sophisticated sensors
such as GPS, sonar, laser ranger finder, or camera onboard
the mobile platforms. However, most of the mobile sensors
have very stringent constraints on the cost and complexity.
Therefore it is not practical to assume the availability of these
sensors. On the other hand, localization algorithms developed
for stationary sensor networks may not be a best fit for mobile
sensor networks. The mobility of the sensors inspires us to
address the sensor localization in a different perspective. New
localization algorithms should be developed to utilize the
mobility of sensors to enhance the localization performance.

To the best of our knowledge, only very limited work has
been done on mobile sensor network localization. Tilak et
al. [10] developed dynamic localization protocols for mobile
sensor networks. However, their main interest is on how often
the localization should be carried out in a mobile sensor
network and not on the localization algorithm itself. Recently,
Hu and Evans [11] proposed sequential Monte Carlo (SMC)
localization method to solve the localization problem and
they found that the mobility of the sensors can be exploited
to improve the accuracy and precision of the localization.
The SMC localization method has two steps, prediction step
and filtering step. In the prediction step, the nodes use the
transition distribution to predict its possible locationsbased
on previous samples and its movement. In the filtering step,
the nodes use new information received to eliminate predicted
locations that are inconsistent with observations. Obviously
this method is derived from the mobile robot localization



algorithms.
In this paper we are going to develop a new localization

algorithm based on a distributed multidimensional scalingap-
proach, MDS-MAP(P). In our algorithm, additional informa-
tion of the network is obtained by moving sensors in a random
direction and adding virtual nodes during the movement. The
distances between the virtual nodes and the surrounding nodes
are stored in an adjacency tables. The information from virtual
nodes puts more constraints on the localization, thus leading
to better performance. This paper is organized as follows:
In section II we introduce MDS-MAP(P) algorithm. Section
III presents a mobility assisted MDS-MAP(P) algorithm,
donoted as MA-MDS-MAP(P), for mobile sensor networks.
Section IV provides detailed comparison of the performance
between the MDS-MAP(P) and MA-MDS-MAP(P) methods
in networks of four different topologies. The influence of
noise and the effect of the number of virtual nodes on the
accuracy of localization are also discussed in this section.
Section V concludes this paper.

II. MDS ALGORITHM FOR NODE LOCALIZATION

Our new algorithm is based on the localization algorithm
developed for stationary sensor networks by Shang et al. [12].
Here we briefly review the MDS-MAP and MDS-MAP(P)
algorithms.

A. MDS-MAP

MDS-MAP is based on a technique called classical mul-
tidimensional scaling (MDS) [13], which is a data analysis
technique that display the structure of distance-like dataas
a geometrical picture. MDS takes one or more matrices
representing distances or dissimilarities between objects and
finds a placement of points in a low-dimensional space (two-
or three-dimensional), where the distances between the points
resemble the original dissimilarities. Analytical solutions are
derived from the distance matrix efficiently through singular
value decomposition and provide the best low-rank approx-
imation (e.g., 2-D space) in the least squared error sense.
MDS-MAP algorithm has the following three steps: [12]

1) Compute shortest paths between all pairs of nodes in the
region of consideration. The shortest path distances are used
to construct the distance matrix for MDS.

2) Apply the classical MDS to the distance matrix, retaining
the first 2 (or 3) largest eigenvalues and eigenvectors to
construct a 2-D (or 3-D) relative map.

3) Given sufficient anchor nodes (3 or more for 2-D
networks, 4 or more for 3-D networks), the coordinates of
the anchors in the relative map are mapped to their absolute
coordinates through a linear transformation. The best linear
transformation between the absolute positions of the anchors
and their positions in the relative map is computed.

Classical MDS requires the distance between every pair of
nodes. It assumes that the shortest path between two nodes
provides an estimate of the Euclidean distance. This estimate
is fine when the networks are dense and uniform, but is not
good for very irregular ones. When the estimation is off,

the result of classical MDS is not good. The MDS-MAP(P)
methods presented in the next section address this issue.

B. The MDS-MAP(P) Method

In the MDS-MAP method (namely, MDS-MAP(P)), each
node computes its own local map using its local information
and then the local maps are merged to form a global map. In
MDS-MAP(P), each node applies MDS to compute a local
map that includes only nearby nodes. For example, only those
nodes within two communication hops are considered. Local
maps are then merged together based on the common nodes
according to the best linear transformation that transforms the
coordinates of the common nodes in one map to those in the
other map. The steps of MDS-MAP(P) are as follows: [12]

1) Set the range for local maps,Rlm. For each node,
neighbors withinRlm hops are involved in building its local
map.

2) Compute local maps. Each node does the following:
a) Compute shortest paths between all pairs of nodes in
range Rlm. The shortest paths are used to construct the
distance matrix for MDS. b) Apply the classical MDS to the
distance matrix and retain the first 2 (or 3) largest eigenvalues
and eigenvectors to construct a 2-D (or 3-D) local map. c)
Refine the local map. Using the node coordinates in the MDS
solution as the initial point, a least squares minimizationis
performed to make the distances between nearby nodes match
the measured ones.

3) Merge local maps. Local maps can be merged either
sequentially or in parallel.

4) Given sufficient anchor nodes (3 or more for 2-D
networks, 4 or more for 3-D networks), transform the global
map to an absolute map based on the absolute positions of
the anchors.

III. M OBILITY ASSISTEDMDS-MAP(P) ALGORITHM

One assumption of the MDS-based methods is that the
shortest path between nodes is approximately proportional
to their Euclidean distance. While this may be true if the
network is dense and uniform. In the situation where a
dense network is not possible due to limited resources or
the network topology is not uniform, this assumption is not
necessarily true. For example, in Fig. 1-(a), while the shortest
path between some nodes, such asB  F , B  E,
are approximately proportional to the Euclidean distances,
the shortest paths betweenA and D, and D and E are,
however, significantly larger than their Euclidean distances.
In this situation, the assumption of the MDS methods is not
valid anymore, which may lead to inaccurate localization.
Moreover, in this graph, nodeA actually can be anywhere
in the circle centered atB with radius equal to|AB|. This is
due to the fact that this graph is not rigid, which means the
existing constraints in the network are not enough to unam-
biguously determine the position of the nodes in it. In this
situation, the traditional MDS-based method can’t guarantee
correct results. The nonproportional relation between pair-
wise shortest paths and the Euclidean distances, and the non-
rigidity of the network are two challenges for the traditional
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Fig. 1. Improvement on the distance estimate with node movement. (a) a
sparse network. The shortest path betweenA and D is A → B → O →

C → D, whose length is much larger than the Euclidean distance between
A andD. The same is true for nodesD andE. (b) If we can insert a node at
A′ and a node atE′, then the shortest path betweenA andD now becomes
A → A′

→ D. The shortest path betweenD andE is D → E′
→ E. Both

of the two new shortest pathes are much better approximationthan those in
the original network. The two new nodes can be inserted by moving A to
A′ andE to E′ temporarily.

MDS-based methods. The first challenge affects the accuracy
of the localization and the second one affects the correctness
of the results.

In some type of networks, such as mobile robotic networks,
each node can move around within a certain range. For this
type of networks, we can utilize the mobile capability of the
nodes to get additional information about the networks, thus
improving the accuracy of localization. For example, in Fig.
1-(b), supposeA moves straight to a new positionA′, andE

moves toE′. If A′ can communicate withB, C, D, andE′

can communicate withD, C, andF , then several new edges,
AA′, A′B, A′C, A′D, E′D, E′C, E′F , E′E, shown as
dashed lines in Fig. 1-(b) can be added into the network. With
these new edges, the shortest distances between nodes, such
asA D, D  E, A C, C  E are greatly improved.
With the improved shortest distance between nodes, we expect
the accuracy of the MDS-based localization will get better.

A. The movement of nodes

Based on the above discussion and the random walk
mobility model [14], [15], we propose a mobility assisted
MDS-based localization scheme for mobile sensor network,
in which each sensor moves straight in a random direction
for a maximum distance. During the movement, the sensor
sends messages to its neighbors to update its position. After
moving for the maximum distance, it tries to returns back to
its original position. This process is repeated for all sensors
in the network. More detailed and formal description of the
proposed scheme is discussed as follows.

We assume that distance between sensors within commu-
nication range can be measured reliably and all nodes in the
network are mobile. During the localization process, a node
can be in two status:Moving or Rest. Before the localization
starts, all nodes are inReststatus. During the movement, a
node may send messages to its neighbor at several positions,
including the initial position, to add virtual nodes when
certain condition is met. Each step of the proposed scheme
is discussed as follows.

• A node in the network broadcastsStart-Localization
message to start the localization process. This node can
be any node in the network that discovers the necessity
to start a localization process.

• Upon receiving theStart-Localizationmessage, each
node, denoted byvi, in the network starts moving in
the following way.

– At the initial position or any intermediate position
during the movement,vi sends a messageAddVir-
tualNodes(vid) to all of its neighbors, wherevid is
identification number of the virtual node to be added
at this position.

– When a neighbor, denoted byvj , receives aAd-
dVirtualNodes(vid), it measures the distancedij be-
tweenvj andvi and sends an messageACK(j, dij)
back tovi.

– When vi receives more than threeACK mes-
sages from its neighbors, it sends aConfirmVir-
tualNodes(vid) to all the neighbors and for each
ACK(j, dij) received, it adds an entry〈vid, j, dij〉
in the local adjacency table to record the distance
between the virtual node and the neighbor. Oth-
erwise, it sends anAbortVirtualNodes(vid) to its
neighbors. Upon receiving aConfirmVirtualNodes,
the neighbor,vj , that has sent anACK message to
vi adds a new entry〈j, vid, dij〉 into its adjacency
tables. If receiving anAbortVirtualNodes(vid), the
neighbors simply delete all message records relevant
to the potential virtual nodevid.

– vi continues moving and repeats the above steps
until it finishes the movement. Thenvi sends a
messageMoveStoped(i) to its neighbors. Upon
receiving this message, its neighbors update the
distances tovi in their adjacency tables.vi also
updates the distances to its neighbors after sending
the MoveStoped(i) message. Finally, it changes its
status toRest.

• Proceed the localization of the network in a revised
MDS-MAP(P) method, which will be discussed below.

B. The merging of local maps

After the movement of all nodes, there are two types of
nodes in the network: one type is real nodes, the other type
is virtual nodes added during the movement of nodes. The
virtual nodes only exist in the adjacency tables of the real
nodes. There is no communication between a virtual node
and any other nodes. However, the distances kept in the ad-
jacency tables provide additional information of the network.
Based on these information, more precise localization can be
obtained through a revised MDS-MAP(P) method. The details
are discussed as follows:

• Step 1: Each nodev sends requests to the nodes in
its two-hop neighborhood for the adjacency tables and
combine the adjacency tables of its neighbors into a local
table T . After removing the duplicated entries (entries



describing the same edge), nodev constructs a local
graph by identifying its two-hop neighbors, shown in
Fig. 2-(a). Let the two hop neighbors be denoted bySv.
v then constructs the distance matrix for nodes inSv

using only edges between nodes inSv. The elements in
the distance matrix are the shortest path between every
two nodes inSv. Obviously, Sv contains all the real
nodes within two hop distance ofv and some virtual
nodes.

• Step 2:v builds its local relative map using the classical
MDS method for nodes inSv

• Step 3:v refines the location of nodes, including the
virtual nodes, in its local relative map via least squares
minimization using the distance information inT and
the coordinates from the step 2 as the initial point. Let
〈i, j, dij〉 denote the entries inT and pij denote the
Euclidean distance betweenvi and vj based on their
coordinates. The formulation of the minimization is

min
∑

i,j∈Sv

wij(dij − pij)
2 for all 〈i, j, dij〉 in T (1)

wherewij is the weight for the distance betweenvi and
vj . To compensate for the potential noise introduced in
the movement of nodes, higher weight can be assigned
to the distances between real nodes.

• Step 4: Merge the local maps until all the real nodes
are included in a core map, which is grown by merging
it with the local maps of neighboring real nodes. The
local map with the maximum number of common nodes,
including virtual nodes, with the core map is chosen to
be merged with the core map. The merging can be done
sequentially [12] or in a distributed way [16].

• Step 5: Transform the core map into an absolute map
based on the absolute positions of anchors. Obviously,
in this step, we only have to transform the coordinates
of the real nodes.

Let k be the average number of nodes, including virtual nodes,
in a local map. The overall complexity for computing each
local map isO(k3). The total complexity for step 2 and 3
is O(k3n). Similar to the discussion in [12], the complexity
of step 4 isO(k3n). For r anchors, the complexity of step 5
is O(r3 + n). So the total complexity of this revised MDS-
MAP(P) method is alsoO(n).

IV. SIMULATION RESULTS

A. Performance comparison with MDS-MAP(P) method

Simulation experiments have been carried out to evaluate
the localization improvement after introducing movement
under various network settings using Matlab. As we know,
the accuracy of the MDS method is highly dependent on the
density/degree of the network. The higher the degree of each
node, the more accurate the localization is. Therefore, we
would focus the experiments in evaluating the improvement
of the proposed scheme in the localization of sparse networks,
whose degree is under 5. We compared the performance
of MA-MDS-MAP(P) with MDS-MAP(P) in four particular
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Fig. 2. (a) Only the real nodes and the virtual nodes, shown asnonfilled
circles, within two hops from the center nodeO are kept in the local map
of O. The virtual nodes shown in gray spheres are not included because
they are more than two hops away fromO. (b) NodeD andE move toD′

andE′ respectively and get into communication range of each other. If they
are both inStationarystatus, then the distance between them is kept in the
adjacency table of bothD andE.

networks of both uniform and irregular topologies. Each
column of Fig. 3 shows the error comparison on one type
of network topologies. The first row shows the ground truth
network, the second row shows the result of MDS-MAP(P),
and the third row shows the result of MA-MDS-MAP(P).
The errors are shown by a line segment starting from the
actual position towards the estimated one. The longer the line
segments are, the larger the error is in localization.

The field size of the four networks evaluated in this
experiment is 10 * 10. The communication range is 1.0
in all the four networks. Two virtual nodes are added per
movement. The random uniform network has 200 nodes
randomly positioned within the field. To prevent the nodes
from getting to too close to each other, the minimum distance
between any two nodes is larger than 0.5. The average degree
is 4.72. The regular uniform network has 144 nodes regularly
positioned. There are 12 nodes in each row/column. To model
the error in grid placement, the position of the nodes are
adjusted by a uniformly distributed noise. The mean of the
noise is 0, the range is between−0.09 and0.09. The average
degree is 4.39. The localization for irregular networks is much
more challenging than that for uniform networks because the
error made in any step during the merging stage is easily
propagated to the whole networks due to the limited the paths
of merging(the merging has to follow the topology of the
networks). The average degrees of the regular C shape and
random C shape networks are 3.96 and 4.12 respectively. The
regular C shape network has 112 nodes regularly positioned
in a C-shape field. The position of each node is adjusted
by the same noise as that in the experiment of regular
uniform network. The random C shape contains 150 nodes.
The minimum distance between any two nodes is 0.5. As we
can see from Fig.3, the error were reduced by more than
90% on the random uniform, regular uniform and regular
C shape networks, and about 75% on the random C shape
network, which demonstrates the improvement of the MA-
MDS-MAP(P) method.
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Fig. 3. Error comparisons four types of networks

B. Analysis of reliability to noise

The above evaluation is based on the assumption that the
sensors can get back to their original positions after move-
ment. However, in real application, due to various reasons,
this is not necessarily true. If sensors can not get to their
original position, the entries recording the distances between
virtual nodes and real nodes become inaccurate. To evaluate
how well the MA-MDS-MAP(P) algorithm adapts to the
deviation of the sensors from their original positions, we
carried out a set of experiments with various levels of additive
noise to the measured distances between virtual nodes and
real nodes. The mean of the noise is 0 and the deviation
of the noise is from 0 to 0.15. Fig. 4 shows the results
of the experiments. We can see that for uniform network,
under 6 percent of additive noise, both the mean and standard
deviation of the error is less than 0.05, which is 5 percent of
the communication range. For C-shape networks, we see more
vibrations. However, the mean and the standard deviation are
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Fig. 4. Evaluation of the effect of the noise in sensor movement. The
horizon axis is the deviation of the noise. The vertical axisis the estimate
error.

still quite small if the deviation of the noise is less than 0.03,
which is 3 percent of the communication range.
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Fig. 5. Analysis of the influence of number of samples on the accuracy of
localization.

C. Analysis of the number of samples per movement

The number of virtual nodes added per movement is an
important factor in the localization of nodes. Usually, more
virtual nodes lead to more accurate localization but also cause
more communication and computation cost. Given the limited
resources of sensors, we want to add as less virtual nodes
as possible and at the same time get accurate results. This
experiment tries to evaluate the number of virtual nodes per
movement on the accuracy of localization. Similarly to the
experiment of noise evaluation, we tried the experiments on
four types of network topologies: regular uniform, random
uniform, regular C-shape, random C-shape. The configuration
(such as the number of nodes, the communication range) of
each network is the same as the networks discussed in the
previous experiments. The results are shown in Fig. 5. As we
can see, the random C-shape is vibrating more than the other
three topologies, but the mean error is still less than 0.07,
about 7% of the communication range. We can also see that
with the increased number of virtual nodes per movement,
the localization generally gets more accurate. However, the
improvement is getting less obvious as the number of virtual
nodes per movement increases. Therefore, it is not necessary
to add many virtual nodes per movement. Two to three virtual
nodes per movement should be sufficient to get accurate
localization.

V. CONCLUSION

In this paper, we proposed a mobility-assisted MDS-
MAP(P) localization approach for mobile sensor network.
The MDS-MAP(P) highly depends on the degree of the
network, which leads to poor performance in sparse network.
Based on the fact that sensors in a mobile network have
limited mobile capability, in the proposed approach, more
information is obtained by moving the sensors in random
directions and adding virtual nodes during the movement. The
distances between the virtual nodes and the real nodes are
kept in adjacency tables. The virtual nodes are incorporated
in building and merging the local maps. Evaluation of the
performance of the proposed approach is carried out on
four types of network: random uniform, random C-shape,
regular uniform, and regular C-shape. The results have shown
significant improvement over the MDS-MAP(P) approach on

low-degree networks. Future work may include the evaluation
of various movment patterns and experiments on real mobile
sensor networks to validate the simulation results.
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