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Abstract—In this paper, we proposed a dynamic mobility- However, most of the localization algorithms are developed

assisted MDS-based localization algorithms for sparse mdle  for stationary sensor networks where the sensor nodes do
sensor network. For sparse networks, the assumption of the not move once they are deployed. Recent years have seen

existing MDS-based localization algorithms is not necessavalid th - int ti bil works 91 wh
and the network may even be nonrigid, which significantly e growing interest in mobile sensor networks [9] where

affects the application and accuracy of the existing MDS-bged ~ @ll or partial of the sensor nodes have motion capability
algorithms. In the proposed algorithm, we utilize the mobie ~ endowed by robotic platforms. Mobile sensor networks have

capability of sensors in a mobile network. By moving the more flexibility, adaptivity and even intelligence compére
sensors in a random direction and recording the distances to to stationary sensor networks. Mobile senors can dynami-

their neighbors during the movement, virtual nodes are addd. I ition th | ¢ fi tai irciE
The distances between virtual nodes and real nodes provide Cally reposition themselves to satisfy certain requireisien

more information about network, which leads to significanty ~ Monitoring coverage, network connectivity, or fault talece.
better localization than existing methods for sparse netwks. Localization for mobile sensor networks is very importamnt t

Experiments and evaluation of the proposed algorithm are  facilitate the information collection and the movement af-m
provided. o bile sensors. Researchers solving the localization prolfie
Index Terms— sensor network localization MDS - . .
mobile sensor networks usually approach it from a robotics
perspective, which heavily relies on the sophisticatedeen
such as GPS, sonar, laser ranger finder, or camera onboard
Recent advancements in wireless communication anthe mobile platforms. However, most of the mobile sensors
micro-electro-mechanical systems (MEMS) have made posshave very stringent constraints on the cost and complexity.
ble the deployment of wireless sensor networks for many rearherefore it is not practical to assume the availabilitylafde
world applications, such as environmental monitoringraea sensors. On the other hand, localization algorithms deeelo
and rescue, military surveillance, and intelligent traorsp-  for stationary sensor networks may not be a best fit for mobile
tion, etc [1], [2], [3]. The ability of a sensor node to detémsn  sensor networks. The mobility of the sensors inspires us to
its physical location is of fundamental importance in sensoaddress the sensor localization in a different perspedtiess
networks. In recent years, various sensor localizatiothodst  localization algorithms should be developed to utilize the
have been developed for ad hoc wireless sensor networkmobility of sensors to enhance the localization perforneanc
Most of the node localization algorithms are based on range To the best of our knowledge, only very limited work has
measurement, through either time of arrival (TOA) [4], time been done on mobile sensor network localization. Tilak et
difference of arrival (TDOA) [5], or received signal strahg al. [10] developed dynamic localization protocols for mebi
(RSS) [6]. For example, In the Picoradio project [7] at UC sensor networks. However, their main interest is on hownofte
Berkeley, a geolocation scheme for an indoor environment ishe localization should be carried out in a mobile sensor
provided based on RF received signal strength measuremenistwork and not on the localization algorithm itself. Retben
and pre-calculated signal strength maps. The AHLoS (AdHu and Evans [11] proposed sequential Monte Carlo (SMC)
Hoc Localization System) [8] proposed by Savvidets al  localization method to solve the localization problem and
enables sensor nodes to discover their locations using they found that the mobility of the sensors can be exploited
set distributed iterative algorithms. An RF based proxmit to improve the accuracy and precision of the localization.
method was developed by [6], in which the location of aThe SMC localization method has two steps, prediction step
node is given as a centroid generated by counting the beac@md filtering step. In the prediction step, the nodes use the
signals transmitted by a set of beacons pre-positioned itransition distribution to predict its possible locatiobased
a mesh pattern. Other methods that do not rely on rangen previous samples and its movement. In the filtering step,
measurements were also developed. For example, the couthie nodes use new information received to eliminate predict
of hops is used as an indication of the distance to the beacdaocations that are inconsistent with observations. Olslipu
nodes in some applications [4]. this method is derived from the mobile robot localization

I. INTRODUCTION



algorithms. the result of classical MDS is not good. The MDS-MAP(P)
In this paper we are going to develop a new localizationmethods presented in the next section address this issue.
algorithm based on a distributed multidimensional scaéipg g The MDS-MAP(P) Method

proach, MDS-MAP(P). In our algorithm, additional informa-
tion of the network is obtained by moving sensors in a random In the MDS'M.AP method (namelyz MDS'MAP(P»' eagh
ode computes its own local map using its local information

direction and adding virtual nodes during the movement. Thé

distances between the virtual nodes and the surroundir@ﬁnod:‘/lngsth&:;hg local rr?apsdare m?rge&g)sfc?[rm a glot;al mi':\p. Iln
are stored in an adjacency tables. The information fronuairt ) (P), each node applies 0 compute a loca

nodes puts more constraints on the localization, thus hegadi map that includes only nearby nodes. For example, only those

to better performance. This paper is organized as fOIIOWSpodes within two communication hops are considered. Local

In section Il we introduce MDS-MAP(P) algorithm. Section maps are then merge_d together based. on the common nodes
Il presents a mobility assisted MDS-MAP(P) algorithm, according to the best linear transformation that trans$ottme

donoted as MA-MDS-MAP(P), for mobile sensor networks coordinates of the common nodes in one map to those in the
Section IV provides detailed comparison of the performancé)ther map. The steps of MDS-MAP(P) are as follows: [12]

between the MDS-MAP(P) and MA-MDS-MAP(P) methods _ ). St the range for local mapsi;,.. For each node,
in networks of four different topologies. The influence of neighbors withinfz,,, hops are involved in building its local

noise and the effect of the number of virtual nodes on thd"2P: L
o : . ; ; 2) Compute local maps. Each node does the following:
accuracy of localization are also discussed in this section

Section V concludes this paper a) Compute shortest paths between all pairs of nodes in
’ range R;,,. The shortest paths are used to construct the
II. MDS ALGORITHM FOR NODE LOCALIZATION distance matrix for MDS. b) Apply the classical MDS to the
distance matrix and retain the first 2 (or 3) largest eigaresl
and eigenvectors to construct a 2-D (or 3-D) local map. c)
Refine the local map. Using the node coordinates in the MDS
solution as the initial point, a least squares minimizat®n
performed to make the distances between nearby nodes match
A. MDS-MAP the measured ones.

MDS-MAP is based on a technique called classical mul- 3) Merge local maps. Local maps can be merged either

- . . o ._sequentially or in parallel.
t|d|m§n3|onal scgllng (MDS) [13], which s a dat"." analysis 4) Given sufficient anchor nodes (3 or more for 2-D
technique that display the structure of distance-like deta
. . ._networks, 4 or more for 3-D networks), transform the global
a geometrical picture. MDS takes one or more matrices e
. : s : map to an absolute map based on the absolute positions of
representing distances or dissimilarities between objent

. o ) . the anchors.
finds a placement of points in a low-dimensional space (two-

or three-dimensional), where the distances between thegpoi  !Il. M OBILITY ASSISTEDMDS-MAP(P)ALGORITHM
resemble the original dissimilarities. Analytical sotuts are One assumption of the MDS-based methods is that the
derived from the distance matrix efficiently through siregul shortest path between nodes is approximately proportional
value decomposition and provide the best low-rank approxto their Euclidean distance. While this may be true if the
imation (e.g., 2-D space) in the least squared error senseetwork is dense and uniform. In the situation where a
MDS-MAP algorithm has the following three steps: [12] dense network is not possible due to limited resources or

1) Compute shortest paths between all pairs of nodes in thine network topology is not uniform, this assumption is not
region of consideration. The shortest path distances ae us necessarily true. For example, in Fig. 1-(a), while the twir
to construct the distance matrix for MDS. path between some nodes, such Bs~» F, B ~ E,

2) Apply the classical MDS to the distance matrix, retainingare approximately proportional to the Euclidean distances
the first 2 (or 3) largest eigenvalues and eigenvectors tthe shortest paths betweet and D, and D and E are,
construct a 2-D (or 3-D) relative map. however, significantly larger than their Euclidean distsic

3) Given sufficient anchor nodes (3 or more for 2-D In this situation, the assumption of the MDS methods is not
networks, 4 or more for 3-D networks), the coordinates ofvalid anymore, which may lead to inaccurate localization.
the anchors in the relative map are mapped to their absolutdoreover, in this graph, nodd actually can be anywhere
coordinates through a linear transformation. The bestline in the circle centered aB with radius equal tdAB|. This is
transformation between the absolute positions of the aischodue to the fact that this graph is not rigid, which means the
and their positions in the relative map is computed. existing constraints in the network are not enough to unam-

Classical MDS requires the distance between every pair dbiguously determine the position of the nodes in it. In this
nodes. It assumes that the shortest path between two nodsisuation, the traditional MDS-based method can’t guaant
provides an estimate of the Euclidean distance. This esimacorrect results. The nonproportional relation between-pai
is fine when the networks are dense and uniform, but is notvise shortest paths and the Euclidean distances, and the non
good for very irregular ones. When the estimation is off,rigidity of the network are two challenges for the traditidn

Our new algorithm is based on the localization algorithm
developed for stationary sensor networks by Shang et 4l. [12
Here we briefly review the MDS-MAP and MDS-MAP(P)
algorithms.



o A node in the network broadcasStart-Localization
message to start the localization process. This node can
be any node in the network that discovers the necessity
to start a localization process.

« Upon receiving theStart-Localizationmessage, each
node, denoted by, in the network starts moving in
the following way.

(0) — At the initial position or any intermediate position

Fig. 1. Improvement on the distance estimate with node mewén{a) a
sparse network. The shortest path betwegeand D is A — B — O —
C — D, whose length is much larger than the Euclidean distanoseest
A andD. The same is true for nodd3 and E. (b) If we can insert a node at
A’ and a node aE’, then the shortest path betwednand D now becomes
A — A’ — D. The shortest path betwednandE is D — E’ — E. Both
of the two new shortest pathes are much better approximé#tiam those in
the original network. The two new nodes can be inserted byimgoy to
A’ and E to E’ temporarily.

MDS-based methods. The first challenge affects the accuracy
of the localization and the second one affects the correstne
of the results.

during the movementy; sends a messag&ddVir-
tualNodesvid) to all of its neighbors, whereid is
identification number of the virtual node to be added
at this position.

When a neighbor, denoted hy;, receives aAd-
dVirtualNodes$vid), it measures the distandg; be-
tweenv; andv; and sends an messa8€K(j, d;;)
back towv;.

When v; receives more than threACK mes-
sages from its neighbors, it sendsConfirmVir-
tualNodesvid) to all the neighbors and for each
ACK(j,d;;) received, it adds an entrjpid, j,d;;)

in the local adjacency table to record the distance
between the virtual node and the neighbor. Oth-
erwise, it sends am\bortVirtualNodesvid) to its
neighbors. Upon receiving @onfirmVirtualNodes

the neighboryp;, that has sent aACK message to

v; adds a new entryj, vid, d;;) into its adjacency
tables. If receiving arAbortVirtualNodesvid), the
neighbors simply delete all message records relevant
to the potential virtual node:d.

— v; continues moving and repeats the above steps
until it finishes the movement. Then; sends a
messageMoveStope@) to its neighbors. Upon
receiving this message, its neighbors update the
distances tov; in their adjacency tablesy; also
updates the distances to its neighbors after sending
the MoveStope@f) message. Finally, it changes its

status toRest

Based on the above discussion and the random walk « Proceed the localization of the network in a revised
mobility model [14], [15], we propose a mobility assisted MDS-MAP(P) method, which will be discussed below.
MDS-based localization scheme for mobile sensor network, ' '
in which gach sensor moves _straight in a random directio%' The merging of local maps
for a maximum distance. During the movement, the sensor
sends messages to its neighbors to update its position: Afte After the movement of all nodes, there are two types of
moving for the maximum distance, it tries to returns back tohodes in the network: one type is real nodes, the other type
its original position. This process is repeated for all sess IS Virtual nodes added during the movement of nodes. The

in the network. More detailed and formal description of theVvirtual nodes only exist in the adjacency tables of the real
proposed scheme is discussed as follows. nodes. There is no communication between a virtual node
We assume that distance between sensors within comm@nd any other nodes. However, the distances kept in the ad-
nication range can be measured reliably and all nodes in th@cency tables provide additional information of the netwo
network are mobile. During the localization process, a nodd@sed on these information, more precise localization @n b
can be in two statusvloving or Rest Before the localization ©btained through a revised MDS-MAP(P) method. The details
starts, all nodes are iReststatus. During the movement, a are discussed as follows:
node may send messages to its neighbor at several positions,. Step 1: Each node sends requests to the nodes in
including the initial position, to add virtual nodes when its two-hop neighborhood for the adjacency tables and
certain condition is met. Each step of the proposed scheme combine the adjacency tables of its neighbors into a local
is discussed as follows. table T'. After removing the duplicated entries (entries

In some type of networks, such as mobile robotic networks,
each node can move around within a certain range. For this
type of networks, we can utilize the mobile capability of the
nodes to get additional information about the networkss thu
improving the accuracy of localization. For example, in.Fig
1-(b), supposed moves straight to a new positioff, and E
moves toE’. If A’ can communicate wittB, C, D, and E’
can communicate witth, C, and F’, then several new edges,
AA', A'B, A'C, A'D, E'D, E'C, E'F, E'E, shown as
dashed lines in Fig. 1-(b) can be added into the network. With
these new edges, the shortest distances between nodes, such
asA~ D, D~ E, A~ C, C~ E are greatly improved.
With the improved shortest distance between nodes, we expec
the accuracy of the MDS-based localization will get better.

A. The movement of nodes



describing the same edge), nodeconstructs a local
graph by identifying its two-hop neighbors, shown in
Fig. 2-(a). Let the two hop neighbors be denoted%yy

v then constructs the distance matrix for nodesSin
using only edges between nodesdp The elements in .
the distance matrix are the shortest path between every
two nodes inS,. Obviously, S, contains all the real

nodes within two hop distance af and some virtual (a) (b)
nodes.
« Step 2:v builds its local relative map using the classical Fig- 2. (a) Only the real nodes and the virtual nodes, shownoasilled
MDS method for nodes it circles, within two hops from the center nodg are kept in the local map
v

. g . . of O. The virtual nodes shown in gray spheres are not includedusec
» Step 3:v refines the location of nodes, including the they are more than two hops away fragh (b) NodeD and E move to D’

virtual nodes, in its local relative map via least squaresand £’ respectively and get into communication range of each otherey
minimization using the distance information i and g&?aggLhc;”gazogf‘[)yost}ﬁa;‘fﬁ d”;;” the distance between them is kept in the
the coordinates from the step 2 as the initial point. Let

(i,7,d;;) denote the entries if" and p;; denote the

Euclidean distance between and v; based on their

coordinates. The formulation of the minimization is

min Z wij(dij — piy)? for all (i, 5,dy;) in T (1) networks of.both uniform and irregular t.opologies. Each
column of Fig. 3 shows the error comparison on one type
of network topologies. The first row shows the ground truth
network, the second row shows the result of MDS-MAP(P),
. : ; nd the third row shows the result of MA-MDS-MAP(P).
the movement of nodes, higher weight can be assigne he errors are shown by a line segment starting from the

to the distances between real node_s. actual position towards the estimated one. The longer tiee |i
o Step 4: Merge the local maps until all the real nodes

: 4 L -~ “segments are, the larger the error is in localization.
are included in a core map, which is grown by merging

it with the local maps of neighboring real nodes. The The field size of the four networks evaluated in this
local map with the maximum number of common nodesexperiment is 10 * 10. The communication range is 1.0
including virtual nodes, with the core map is chosen tojn all the four networks. Two virtual nodes are added per
be merged with the core map. The merging can be donghovement. The random uniform network has 200 nodes
sequentially [12] or in a distributed way [16]. randomly positioned within the field. To prevent the nodes
« Step 5: Transform the core map into an absolute magrom getting to too close to each other, the minimum distance
based on the absolute positions of anchors. Obviouslyyetween any two nodes is larger than 0.5. The average degree
in this step, we only have to transform the coordinatess 4.72. The regular uniform network has 144 nodes regularly
of the real nodes. positioned. There are 12 nodes in each row/column. To model
Let k be the average number of nodes, including virtual nodeshe error in grid placement, the position of the nodes are
in a local map. The overall complexity for computing eachadjusted by a uniformly distributed noise. The mean of the
local map isO(k?). The total complexity for step 2 and 3 noise is 0, the range is betwee).09 and0.09. The average
is O(k®n). Similar to the discussion in [12], the complexity degree is 4.39. The localization for irregular networks iscm
of step 4 isO(k®n). Forr anchors, the complexity of step 5 more challenging than that for uniform networks because the
is O(r® +n). So the total complexity of this revised MDS- error made in any step during the merging stage is easily
MAP(P) method is als@(n). propagated to the whole networks due to the limited the paths
of merging(the merging has to follow the topology of the
) ) networks). The average degrees of the regular C shape and
A. Performance comparison with MDS-MAP(P) method  random C shape networks are 3.96 and 4.12 respectively. The
Simulation experiments have been carried out to evaluateegular C shape network has 112 nodes regularly positioned
the localization improvement after introducing movementin a C-shape field. The position of each node is adjusted
under various network settings using Matlab. As we knowby the same noise as that in the experiment of regular
the accuracy of the MDS method is highly dependent on theniform network. The random C shape contains 150 nodes.
density/degree of the network. The higher the degree of eachhe minimum distance between any two nodes is 0.5. As we
node, the more accurate the localization is. Therefore, wean see from Fig.3, the error were reduced by more than
would focus the experiments in evaluating the improvemen®0% on the random uniform, regular uniform and regular
of the proposed scheme in the localization of sparse netyorkC shape networks, and about 75% on the random C shape
whose degree is under 5. We compared the performanagetwork, which demonstrates the improvement of the MA-
of MA-MDS-MAP(P) with MDS-MAP(P) in four particular MDS-MAP(P) method.

i,j€Sy
wherew;; is the weight for the distance betweenpand
v;. To compensate for the potential noise introduced in

IV. SIMULATION RESULTS



random uniform regular uniform regular C Shape random C eshap

Ground Truth: 200 points Ground Truth: 144 points Ground Truth: 112 points Ground Truth: 150 points
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Fig. 3. Error comparisons four types of networks

B. Analysis of reliability to noise

045

The above evaluation is based on the assumption that the*
sensors can get back to their original positions after move-
ment. However, in real application, due to various reasons, -
this is not necessarily true. If sensors can not get to their ™
original position, the entries recording the distancesvben
virtual nodes and real nodes become inaccurate. To evaluate +—=
how well the MA-MDS-MAP(P) algorithm adapts to the
deviation of the sensors from their original positions, we
carried out a set of experiments with various levels of aglit rig. 4. Evaluation of the effect of the noise in sensor mowem@he
noise to the measured distances between virtual nodes ahdrizon axis is the deviation of the noise. The vertical d@xishe estimate
real nodes. The mean of the noise is 0 and the deviatiofi™"
of the noise is from 0 to 0.15. Fig. 4 shows the results
of the experiments. We can see that for uniform network,
under 6 percent of additive noise, both the mean and standard
deviation of the error is less than 0.05, which is 5 percent of
the communication range. For C-shape networks, we see mostill quite small if the deviation of the noise is less tha@3).
vibrations. However, the mean and the standard deviatien awhich is 3 percent of the communication range.

5 oo 01 4 oo oo 01
Deviaton of the noise Deviaton of the noise

mean error standard deviation
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Fig. 5. Analysis of the influence of number of samples on tfeucy of
localization.

(1]

2

C. Analysis of the number of samples per movement 2

The number of virtual nodes added per movement is an
important factor in the localization of nodes. Usually, mor
virtual nodes lead to more accurate localization but alssea
more communication and computation cost. Given the limited [,
resources of sensors, we want to add as less virtual nodes
as possible and at the same time get accurate results. Thip%]
experiment tries to evaluate the number of virtual nodes per
movement on the accuracy of localization. Similarly to the
experiment of noise evaluation, we tried the experiments on
four types of network topologies: regular uniform, random
uniform, regular C-shape, random C-shape. The configuratio
(such as the number of nodes, the communication range) oLﬂ
each network is the same as the networks discussed in th
previous experiments. The results are shown in Fig. 5. As wels]
can see, the random C-shape is vibrating more than the othe[r9]
three topologies, but the mean error is still less than 0.07,
about 7% of the communication range. We can also see that
with the increased number of virtual nodes per movement2®!
the localization generally gets more accurate. However, th
improvement is getting less obvious as the number of virtual
nodes per movement increases. Therefore, it is not negessdf!
to add many virtual nodes per movement. Two to three virtuaj; 5
nodes per movement should be sufficient to get accurate
localization. (13]

(6]

V. CONCLUSION (14]

In this paper, we proposed a mobility-assisted MDS-
MAP(P) localization approach for mobile sensor network.
The MDS-MAP(P) highly depends on the degree of the
network, which leads to poor performance in sparse network.
Based on the fact that sensors in a mobile network hav&
limited mobile capability, in the proposed approach, more
information is obtained by moving the sensors in random
directions and adding virtual nodes during the movemenrg. Th
distances between the virtual nodes and the real nodes are
kept in adjacency tables. The virtual nodes are incorpdrate
in building and merging the local maps. Evaluation of the
performance of the proposed approach is carried out on
four types of network: random uniform, random C-shape,
regular uniform, and regular C-shape. The results have show
significant improvement over the MDS-MAP(P) approach on

[15]

low-degree networks. Future work may include the evalwmatio
of various movment patterns and experiments on real mobile
sensor networks to validate the simulation results.
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