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Online Distributed IoT Security Monitoring with
Multidimensional Streaming Big Data
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Abstract—Internet of Things (IoT) enables extensive connec-
tions between cyber and physical ‘“things”. Nevertheless, the
streaming data among IoT sensors bring “big data” issues, for
example, large data volumes, data redundancy, lack of scalability
and so on. Under “big data' circumstances, IoT system moni-
toring becomes a challenge. Furthermore, cyberattacks which
threaten IoT security are hard to be detected. In this paper, we
propose an online distributed IoT security monitoring algorithm
(ODIS). An advanced influential point selection operation extracts
important information from multidimensional time series data
across distributed sensor nodes based on the spatial and temporal
data dependence structure. Then, an accurate data structure
model is constructed to capture the IoT system behaviors. Next,
hypothesis testing is carried out to quantify the uncertainty of
the monitoring tasks. Besides, the distributed system architecture
solves the scalability issue. Using a real sensor network testbed,
we commit cyberattacks to an IoT system with different patterns
and strengths. The proposed ODIS algorithm demonstrates
promising detection and monitoring performances.

Index Terms—IoT security, online, distributed, big data.

I. INTRODUCTION

XPLOSION of the Internet of Things (IoT) has been

witnessed in diversified fields [1]. The number of IoT
devices, as well as the generated data at different layers, are
exponentially increasing. As reported, there will be more than
50 billion terminal devices worldwide, and the annual data
generated will reach 847 Zebytes by 2021 [2]. “Big data”
hereby becomes common in IoT applications [3], such as
industrial manufacturing [4], smart cities [5], energy inter-
net [6], wireless sensor network (WSN) [7], etc. However,
because the [oT paradigm enables various connections between
cyber networks and physical devices, vulnerabilities become an
important issue [8]. Data-driven based IoT security solutions
have been proposed, such as neural networks and deep learning
based methods [9]. Nevertheless, the “big data” nature of IoT
applications generates furthermore challenges, including the
vast volume which will continuously grow [10], modeling
complexity caused by large-scale processes [11], high-speed
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ubiquitous data collection [12], data redundancy introduced
by multidimensional data collected asynchronously across
distributed nodes [13], algorithm scalability [14], and so on.
Thus, it is necessary to develop IoT security monitoring
techniques in the “big data” era.

Our motivation is to effectively detect IoT system anomalies
caused by cyberattacks under the big data circumstances,
especially in WSN where multidimensional streaming data
are gathered from networked sensors in a high speed [15],
as shown in Fig. 1. The important anomaly detection and
diagnosis information for IoT monitoring are typically buried in
the system metrics, such as energy consumption [8] and system
resource usages [9]. Thus, extracting useful information from
data, especially unlabeled samples, is extremely important [16].
To fight against the data redundancy, finding the informative
samples is highly desired for accelerating the computation and
transmission processes of the high-speed streaming data. To
effectively and efficiently extract informative samples, influen-
tial point selection (IPS) can be viewed as a data extraction
approach to reduce the unnecessary energy consumption in IoT
devices caused by redundant computations and system memory
usages [17], [18]. Randomized data selection methods yield a
high accuracy on model parameter estimation [17].
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Fig. 1. Multidimensional streaming “Big Data" from IoT systems. In a wireless
sensor network (WSN), there are sensor nodes (gray dots) and sink nodes (blue
hexagons). Besides sensing data (black cylinders), sink nodes also process
data and exchange information among sink nodes (orange cylinders).
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Based on the extracted influential points, how to understand
the dynamic temporal and spatial/cross-sectional dependence
structure of multidimensional streaming time series is still
a challenge. The vector autoregressive (VAR) model, the
most popular and fundamental time series models, provides
a mechanism for capturing complex latent multidimensional
dependency structures [19], [20], [13]. Since it is impossible
to model the various unknown cyberattacks [8], we propose to
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Fig. 2. The proposed ODIS algorithm with streaming big data. The detailed method descriptions and algorithms can be found in Section III.

model the normal system behaviors as an alternative solution.
Thus, the system performance modeling accuracy is of great
importance, and the accurate and robust data dependency
modeling can facilitate this purpose.

In addition, IoT system essentially has a distributed architec-
ture [21], where each sensor node only observes partial local
information (a smaller set of relevant variables and features are
analyzed locally [22]), but in together forms the analysis of the
whole network. Note that, a distributed manner has additive
benefits, such as more secure and enhanced robustness, since
the attack behaviors are isolated. Thus, IoT security monitoring
procedure should be designed in a distributed manner and the
computation tasks can be assigned to individual nodes.

In this paper, we propose an Online Distributed IoT Security
monitoring algorithm (ODIS) for multidimensional streaming
big time series data. The whole workflow is shown in Fig. 2.
Based on the efficient streaming time series data dynamic
structure extraction through IPS, we can model the IoT data
economically and accurately. In addition, thanks to the online
distributed design, ODIS is suitable for the real-time large-scale
multidimensional streaming [oT security monitoring. Finally, a
complete algorithm is proposed so that the whole IoT system
can have an end-to-end security solution. The contributions of
this paper can be summarized as follows:

e« We propose a novel online IoT security monitoring
algorithm under the “big data” circumstances.

« Data science techniques such as IPS and streaming data
modeling are proposed to extract intrinsic data structures
efficiently and effectively. The IoT application data are
collected across time and space, so the proposed approach
considers and models spatio-temporal dependencies.

o Distributed algorithm design and the online streaming
processing feature empower the ODIS algorithm the
abilities of scalability and real-time applications for large-
scale sensor networks.

The remainder of this paper is organized as follows.Related
works are introduced in Section II. In Section III, we describe
the proposed ODIS algorithm in detail with the related
theoretical principles of every important operation. Using a
real IoT testbed in Section IV, we analyze the performances of
our proposed algorithm explicitly with comprehensive and
quantitative analysis. In the end, a conclusion section is
enclosed in Section V.

II. RELATED WORK

IoT vulnerabilities arise due to the connected cyber-physical
infrastructure [23], [24]. To eliminate IoT security threats, there
is a high demand for solutions with a real-time, scalable, and
distributed monitoring infrastructure [13]. Thus, the previous
resilient approaches, such as, simple signal analytics based [25],
Kalman filter [26], generalized likelihood ratio [27], the
cumulative sum (CUSUM) [28], leverage score [29], Bayesian
calibration [30], and machine learning [31], which need a
center to monitor and control the entire system, are not suitable
to be a distributed IoT security framework. In contrast, the
required system should be distributed, where sensors only
coordinate with its own neighbors within limited distances, and
the multidimensional data could be collected asynchronously
across distributed nodes [13].

In addition, typical data-driven approaches also suffer the
lack of precise failure models in the device level as well as the
system (network) level. For example, a resilient strategy was
proposed to dispatch virtual power plant under cyber attacks
in [32], where lower and upper bounds of the controller states
are estimated in a distributed way. However, in the consensus-
based energy management algorithm, false states, even minor
ones within the given bounds, could cause large deviations [33],
resulting in an ineffective resilient strategy.

III. METHODOLOGY AND ALGORITHM

In this section, we briefly describe the principles of the
ODIS algorithm. Every key step is introduced and the whole
algorithm is summarized as well.

A. Symbol and Notation

The upper-case letters A and A are used for matrices and
operators, and the curly capital letter A is for set or collection
of sets. The vector is denoted by the lower-case bold letter a,
and the scalar is denoted by the lower-case letter a. We write
the transpose of a matrix A as A’, the determinant of a matrix
A as det(A), and matrix vectorization as vec(-). Specifically,
E(-) denotes the expectation, = denotes equal by definition,
| - ||2 denotes the ¢5-norm for a vector, and || - || denotes the
Frobenius norm for a matrix. Moreover, Z denotes the integers,
R denotes the real numbers, I,, denote the identity matrix of
dimension n, and 1{, } denotes the indicator function.
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B. Multidimensional Time Series Modeling

The multidimensional time series modeling can effectively
extract the temporal dependent information from the streaming
multidimensional data, which is the key to understand and
monitor the status of the IoT system.

The VAR family as the most important family of the time
series models, is used to reveal the complex dependence
structure in the streaming time series data [19]. The VAR
model class quantifies complex temporal and cross-sectional
interrelationship among the multidimensional time series. At
the same time, the VAR model is flexible enough to be easily
integrated into the distributed IoT system [13], providing
treatment for the big data scenario.

The K-dimensional VAR model of order p (VAR(p)) of
K-dimensional streaming data y; can be written as

b
ye=Y ®iyii+er, (1)
i=1

where t € Z, ®;’s are K x K model coefficient matrices, and
€¢ is a sequence of independent and identically distributed
(i.i.d.) random vectors with mean zero and finite non-singular
covariance matrix. The VAR(p) model in Eq. (1) encodes
the temporal and cross-sectional dependence structure between
sensors in the IoT system through the coefficient matrices ®;’s,
which are the key to understand the structural information from
the streaming data. Learning these coefficient matrices can be
done through Ordinary Least-Squares (OLS) estimate [19],
[20]. However, two-fold challenges need to be conquered for
the streaming big data setting. First, if given a fixed time period
T, the computational cost of estimating the model coefficient
matrices is O(TK?p?). It will pose a computational challenge
for the entire IoT system when number of observed data T is
huge or dimension of the data K is high. Second, for streaming
data analysis, an online algorithm is needed so that we can
achieve the real-time monitoring of the IoT system. In the
following subsections, we will address these two issues.

C. Big Data Influential Point Selection

With the growing scale of the IoT streaming data, the
huge volume of data challenges the computational and storage
limits of the IoT system. For streaming IoT data monitoring,
selecting the influential points reduces the processing time,
energy consumption and thus be an effective road to the “big
data” challenges. Data sketching and subsampling are popular
tools to reduce the size of the data, with applications in online
streaming analysis [13].

Extend the linear VAR(p) model in Eq. (1) to the form of
general streaming non-linear model:

Vi =F(¥Vi-1:¥i-2 " ¥i—p) B +ep, 2)
! !

for observation up to time ¢, where B = [®], @5, -+, &} ]" is
the Kp x K model coefficient matrix.

For a given function f(-), we denote x; =
f(¥i-1:¥i—2,"""»¥i—p)'s a column vector of length
Kp. The model coefficient matrix then can be estimated as

-1
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We value the importance of a data point y; through its
predicted value y; = hs:y:, where

/ /
htt =Xy E XXy
t

is the t¢-th diagonal element of Hat Matrix, denoting the
Mahalanobis distance of the t-th data [34], [35].

To effectively reduce the data size while maintaining the
underlying data features, we select a subset S from time
domain {1,...,7T}, and use the subset data {y:|t € S} to
efficiently estimate the model coefficient matrix. The least
square estimator [36] then becomes

-1
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If the subset size |S| is much less than the data size T, i.e.,
|S| << T, the IPS will greatly save the computational time
and cost to O(|S|K?%p?).

The IPS is defined according to the selection rule

Sips = {tE {1,...,T} s hy >7“2}7 (6)

where r is the selection threshold. The selection probability
distribution follows the chi-squared distribution with degress
of freedom Kp, x%,. Thus the selection threshold r is chosen
as a square root of the quantile of X%@ distribution, that is

P(t € Sips) = P(x%k, > r°), (7)

where the selection threshold 7 is approximately proportional
to the selection ratio, i.e. |Sypg|/T. The theoretical justi-
fication of the choice of r can be found in [13]. Alternatively,
IPS can be described as, for data y; observed at time ¢, if
the Mahalanobis distance +/h+ > 7, then we decide the data
point y; as the influential point and include ¢ in subset S;pg.
Fig. 3 visualizes the geometric property and corresponding
Mabhalanobis distance of IPS procedure, where the data points
outside the ellipse are selected as influential points in the subset
Srps. IPS can be widely used to construct the importance
sampling in big data analytic to reduce the data size, and it
can also be applied in regression diagnostics to identify the
outliers and the influential observations, see [37], [38].
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Fig. 3. IPS Illustration: One-dimensional data y; are plotted with axes lag-2
values y¢—o vs. lag-1 values y;—1. IPS selection rule 7 is proportional to
selection ratio, i.e. 7 < |Sypg|/T. The Mahalanobis distances larger than the
ellipses (red: 10%; green: 5%) will be selected as the influential points. The
influential points only account for a small amount of the whole dataset, e.g. 5
% or 10 %, but they represent the data structure.
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D. Online Streaming IPS and Time Series Modeling

In practice calculation of the streaming IPS, we need to
tackle the computational bottleneck of Mahalanobis distance in
Eq. (4), the inverse of sample covariance matrix ), x;x; and
update the it as the new data arriving. The benefit of calculating
the Mahalanobis distance is that is provides the unitless and
scale-invariant measurement to the influence of the data, and
takes into account the correlations of the data. Such bottleneck
makes the IPS computation as expensive as solving the original
least squares problem in Eq. (3) in a streaming setting.

We propose an online streaming IPS adapting the single-
pass streaming algorithm. As the new data arriving, we
collect the first batch of data points as pilot sample to
calculate a robust estimation on the sample covariance matrix
Q= (Zto Xtoxgo)fl with time range to taking from pilot
sample batch. Then for ¢ > {y, the streaming IPS and the
corresponding selection rule is replaced as

iltt e X;QXt > 7'2 for t > to- (8)

Since x; is constructed based on the VAR model, the
streaming IPS procedure is a single-pass procedure that only
requires linear computation time O(Kp) with respect to the
VAR model dimension. It makes the streaming IPS scalable in
the big data setting. Online streaming time series modeling also
calls for an online real-time method to periodically aggregates
historical information from previous data, updating the current
estimation on the model coefficient matrix based on the arriving
new data. More specifically, when the streaming data keep
arriving sequentially, we update the estimate of the model
coefficient matrix B adaptively.

The streaming IPS makes online real-time decision on
selecting influential points S;pg and IoT system monitoring.
In other words, the online VAR modeling and optimization
with respect to model matrix B become, for each time stamp
t and selected influential points,

>

1€SrpsN{i<t}

ly; — x/BJ[3, 9)

B; = argmin

where x; = f(y;_;,¥; 2, ,¥i_,) - Note that the estimation
of By in Eq. (9) is an online optimization in a standard linear
form. It can be solved by various optimization algorithms
including the Kalman filter [39], recursive least squares [40],
and gradient descent [41]. Our streaming IPS and time series
modeling are independent from the choice of the solver to the
optimization in Eq. (9). As long as the solver satisfies the one-
pass property in online optimization and has the computational
complexity linear in time ¢, the IPS monitoring and time series
modeling will be scalable for the streaming big data setting.

E. Distributed Online Monitoring

Distributed computing infrastructure is intrinsic and nec-
essary to the IoT tasks. Each sensor is observing a one-
dimensional streaming data, and all sensors together form
a network with a certain topological structure. The sensor
network is observing the multidimensional streaming time
series based on the topological structure. Such structure leads
to a distributed computing environment. The streaming IPS

One-hop neighborhood of
node 4%

“ Receive data & local estimates from one-hop
neighbors

Transfer data & local estimates with one-hop
neighbors

Fig. 4. Diffusion strategy of the distributed network. At every time ¢, node k
collects a measurement yim and neighborhood data.

and VAR modeling can be integrated into the asynchronous
distributed computing environment. Fig. 4 illustrates the one-
hop neighborhood diffusion strategy.

The streaming IPS defined in Eq. (8) and selection rule
defined in Eq. (6) can be implemented on each marginal dimen-
sion asynchronously and independently under the distributed
setting. The selection rule Sl(fg for node k € {1,...,K}
becomes,

MR =x! Ox,, > 12, (10)

where x,, = f(y,,_1,¥r 2" »¥r,—p) i the k-th
marginal local copy of the streaming data at local time 7.

Given the assumption that the multidimensional streaming
data arrive sequentially in communication restricted distributed
streaming environment, we exploit the VAR model structure
so that the VAR modeling in Eq. (9) can be decomposed to
K subproblems. For simplicity, we assume the functional f(-)
as the linear form. We express the model coefficient matrix B
as a block matrix with column vectors:

B=[bW p? .. b)) (11)

with b*) being the k-th column of B for k € {1,..., K}. For
node k at local time 7%, the k-th subproblem becomes

> 1y — 7, 83,

ThESTPSN{L0o t}

12)

bﬁ’}? = arg min
b(k)
where yy,f) is the k-th element of yr; at local time 7, for k €
{1,..., K}. The estimation of bg’:) can be completed once all
components of x,, is observed at local time 7. The estimation
of different nodes k # k' is calculated uncoordinately, which
leads us the asynchronous algorithm in the IoT system.
Various distributed consensus optimization algorithms can be
used to solved the subproblems Eq. (12), including distributed
gradient descent [41], distributed ADMM [42], and distributed
Kalman filter [39]. The framework of distributed recursive
least squares [40] is adapted to solving the distributed problem
in Eq. (12) as an illustration. When data from its one-hop
neighbors sequentially arrived with some delay (see Fig. 4),
the local recursive least squares is to estimate the local model
coefficient b(T’z) for k-th node and local time 7, € S;pg

by = b0y ) — x0Tk, (1)



IEEE INTERNET OF THINGS JOURNAL, VOL XX, NO XX, XXX 2020

where

P, =P, —knx. P, 1. (14)

k, & v;klPTk,lek, and v, = 1+x), Py 1%, with P as
the k-th local estimate of the precision matrix. By transmitting
the local estimation bgz) to its neighborhood, each node will
form a complete model coefficient matrix estimate B, , at time
Tk, by combining theses column vectors according to Eq. (11).
We summarize the algorithm in Algorithm 1.

Algorithm 1 Online Distributed Streaming IPS Monitoring

Input: From pilot sample batch: 2 , r, and initial values of By and
0 .
Output: Model coefficient matrix estimate B,
1: while ¢ > 0 do
2:  while node k£ € [1,..., K] do

3: Receive the local data yt(k>, and the one-hop neighborhood
data

4: Transmit the local data yék) to one-hop neighbors

5: Wait until x,, is complete for some 7, < ¢

6: if lNz(T’,? > r2 then

7: Update bTi) and P, according to recursive least squares

according to Eq. (13) and Eq. (14)

8: else

9: b =" | and P, =P, _,

10: end if

11: Exchange the one-hop local estimate b™®

12: T < Tk + 1

13: return B, =[bl) ... b(T];), S

14: end while node
15: end while ¢

F. Consensus Hypothesis Testing

For the monitoring purpose, we develop the statistical
hypothesis testing strategy to provide real time status and
uncertainty quantification based on the distributed monitoring
results B;. In Algorithm 1, each node has been fused the
consensus monitoring results B; based on the diffusion strategy,
see e.g. [39], which means every node will have the same
monitoring results B, when ¢ is large enough. The purpose
of hypothesis testing is to distinguish the attack status from
the normal status in a quantitative way. Based on the VAR
modeling, we construct the Wald type statistics for hypothesis
testing with null hypothesis Hy : B; = Bnoma against
alternative hypothesis H; : B; # ByNoma, Where we ignore
the superscript (k) since the consensus results of B;. The
Wald statistic has asymptotic x? distribution with p degrees
of freedom, where p is the rank of matrix B; [20]. Then we
provide a hypothesis testing with a p-value that quantifies the
uncertainty of online attack monitoring statues. If we reject the
null hypothesis based on the p-value, the current data suggest
that there is a significant pattern change to make the system
deviates from its normal status. After the distributed consensus
hypothesis testing, the system can obtain a unified decision.

G. Proposed ODIS Algorithm

We realize the online distributed IoT security monitoring
through the mentioned key steps. While Figure 2 shows the big
picture of the whole workflow, Algorithm 2 shows the detailed
comprehensive workflow of the proposed ODIS algorithm using
the connections with key theories.

Algorithm 2 The whole ODIS algorithm.

Input: K-dimensional Big Data Streaming in IoT System
Output: System monitoring, attack status decision.
1: while time ¢ > 0 do
2: Streaming IPS using Eq. (6) - Eq. (8) to reduce the data size
and select influential points Srps;
3:  Extract the model matrix B, at time ¢ € S;ps according to
model Eq. (9);
4:  Distributed modeling according to Eq. (11) - Eq.(12);
5:  Structural weight update and online monitoring following
Eq. (13) - Eq. (14);
6:  Hypothesis testing for attack status quantification based on B;.
If null hypothesis Hy is rejected, the attack status is detected.
7: end while ¢

IV. EXPERIMENTS AND EVALUATION

To evaluate ODIS algorithm, we carry out cyberattack
experiments using a real IoT system, where smart sensors
are connected within a wireless network. Different cyber attack
strengths are tested to demonstrate the performances of ODIS
in cyber attack detection and monitoring.

A. Testbed Setup

We use the Beaglebone Black boards (BBB) in our experi-
ments! to implement a real IoT system consisting of wireless
network connected smart sensors (embedded system). Fig. 5
shows the testbed in our study. Note that there are 36 available
BBBs in the same cluster sharing the same mesh network,
where distributed algorithms can be operated among nodes.

Fig. 5. Real IoT device testbed built by BBBs connected via a wireless
network.

B. Cyberattack Detection and Monitoring

Denial-of-Service (DoS) Cyberattack: The IoT sensor net-
works are generally vulnerable to intrusion related to snooping,
spoofing, masquerading, Denial-of-Service (DoS) attacks. DoS
attacks impact the network communication partially or com-
pletely. As the sensor nodes of IoT are low powered and lossy,
the impact of DoS attack is quite significant [43]. The DoS
attack disrupts the communication between devices, making
their unavailability. The DoS attack can be carried out externally
or internally in IoT and is very hard to detect it unless the
services have stopped working. For example, in the flooding
attack, the attacker overflows the network through sending

'The hardware details are available at http://beagleboard.org/black, (Last
access: June 25, 2019.)
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packets to disrupt the service of legitimate users. Its examples
include DNS (Domain Name System) flood, ICMP (Internet
Control Message Protocol) flood and UDP (User Datagram
Protocol) flood. There are four common types of DoS attacks,
volumetric, network transport, application and multi-vector.
As volumetric attacks are the most common DoS attacks, we
simulate volumetric DoS attacks in our experiments, which
consume available network bandwidth between the target and
the internet by overwhelming the target with a flood of data.

Data: To monitor the WSN, we adopt the energy consump-
tion measurement [8] of every node, which represents the whole
system activities of the node. The total energy consumption
consists of energy consumption from individual subcompo-
nents, such as CPU, RAM, storage and data transmission,
etc. In addition, cyberattacks result in the abnormal system
behaviors [9] that can be observed from the energy consumption
of the subcomponents. For example, DoS attacks significantly
increase the amount of received data, resulting in the energy
consumption of not only the network adapter but also the
whole system increases. If the proposed ODIS algorithm can
detect anomalies and monitor the attack variations based on
the energy consumption auditing, the IoT monitoring system
is fully functional.

Evaluation: We compare the VAR modeling accuracy using
IPS with Vanilla, and Bernoulli sampling methods. The Vanilla
method uses all data points without data points selection for
monitoring, which may result in delayed responses for IoT
system. In Bernoulli sampling, a Bernoulli trail is conducted to
randomly select data points at each time with a fixed success
probability (p = 1/2) [13].

1) Experiment 1: DoS Detection: Fig. 6 shows the relative
weak cyberattacks. The attack strengths vary from 25 KBps
to 10 MBps. Evey time, DoS attack happens 20 seconds then
there is a 5 seconds interval. The time series data contain 36
dimensions (K = 36), and each dimension has around 24, 000
samples (23,985) with data interval 0.1 second.
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Fig. 6. DoS attack pattern in Experiment 1.

As defined in Eq (9), the VAR model should be accurately
characterized using the streaming data. We compare the
modeling performances in Fig. 7 using different sampling
methods: IPS, Vanilla, and Bernoulli. Due to the sampling
strategy used Bernoulli sampling, the modeling error is large.
Vanilla and IPS sampling method generate relatively small
modeling errors. Furthermore,due to the existence of inevitable

noises in the real testbed, the modeling results from Vanilla
could be influenced by the noise, whereas, IPS has a better
robustness as only informative points are extracted and used.

The estimated coefficient matrix ®; under DoS attacks 25
KBps and 250 KBps are shown in Fig. 8. It is observable that
there are minor off-diagonal unusual patterns indicating that
the IoT system is under attack even the attacks are not strong.
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Fig. 7. Modeling errors using different methods in Experiment 1.
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Fig. 8. The estimated parameter matrics ®1 under DoS attacks (a) 25 KBps
and (b) 250 KBps.

2) Experiment 2: DoS Monitoring: Fig. 9 shows the relative
strong cyber attacks. The attack strengths vary from 10 MBps
to 160 MBps. The time series data contain 36 dimensions
(K = 36, and each dimension has around 24,000 samples
(23, 872) with data interval 0.1 second.

Fig. 10 shows the modeling accuracy errors using different
sampling methods: IPS, Vanilla, and Bernoulli. Similar to
Fig. 7, the Bernulli sampling method generates larger errors
than the other two methods. IPS is still the best approach. Note
that because of the hardware design and system limitations,
when the cyberattacks are strong, not only the network card
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performance is affected, the whole system does not behave
normally. Then, there are more interference and noise mixed in
the modeling process, so the modeling performances of Vanilla
and IPS are not as good as those in Experiment 1.
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Fig. 9. DoS attack pattern in Experiment 2.
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Fig. 10. Modeling errors using different methods in Experiment 2.

According to the consensus hypothesis testing in Sec-
tion III-F, we use the Wald test [20] to monitor the streaming
data structure variations. p-value is employed to reject the null
hypothesis. We observe that p is close to 1 for the same attack
strength, and when there is a system status change p value is
small, for example, when the system changes from normal to
under attack, p value can be as small as 0.0001, and when the
DoS attack is strong, we observe p value’s unit could be 10~7,

3) Computation Efficiency: Besides the modeling error
characterization, we also compare the computation efficiency
of the mentioned methods. Since the data amounts are close
in Experiment 1 and Experiment 2, the total computation time
consumption of two experiments does not vary significantly. It
is clear that IPS is more efficient than Vanilla in both Fig. 11
and Fig. 12, as with less data the computation could be faster.
However, because, besides the modeling computation, storage
and data transmission also take time, even longer time, the
time saving is limited. Nevertheless, the proposed approach is
promising, as we can notice that more time saved for larger data,
which is the very target for the “big data" processing. Compared
with Bernoulli sampling, IPS has additional computations,
so it is a little slower, but IPS can have a slightly better
modeling accuracy even compared with Vanilla method. Thus,
the proposed approach is the most promising.
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Fig. 11. The average elapsed time of IPS (blue), Bernoulli (red) and Vanilla
(orange) in Experiment 1.
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Fig. 12. The average elapsed time of IPS (blue), Bernoulli (red) and Vanilla
(orange) in Experiment 2.

V. CONCLUSION

To deal with the “big data” issues in IoT security, we
propose an online distributed IoT security monitoring algorithm-
ODIS. The proposed algorithm handles the complex streaming
multidimensional time series very well. The latent streaming
data dependency on both time and space can be effectively
and efficiently extracted from the multidimensional big data.
In addition, the online distributed algorithm design enables
the real time IoT monitoring with affordable computation
and communication burdens. Using the testbed with real IoT
devices, we carry out experiments about cyberattacks (e.g.
DoS) towards IoT sensor networks. The proposed algorithm
is a general IoT cybersecurity solution, and shows promising
performances in terms of cyberattack detection and monitoring.
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